1
|
Lopez-Ortiz C, Gracia-Rodriguez C, Belcher S, Flores-Iga G, Das A, Nimmakayala P, Balagurusamy N, Reddy UK. Drosophila melanogaster as a Translational Model System to Explore the Impact of Phytochemicals on Human Health. Int J Mol Sci 2023; 24:13365. [PMID: 37686177 PMCID: PMC10487418 DOI: 10.3390/ijms241713365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| |
Collapse
|
2
|
Marquez MM, Chacron MJ. Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons. Heliyon 2023; 9:e18315. [PMID: 37539191 PMCID: PMC10395545 DOI: 10.1016/j.heliyon.2023.e18315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
How neural populations encode sensory input to generate behavioral responses remains a central problem in systems neuroscience. Here we investigated how neuromodulation influences population coding of behaviorally relevant stimuli to give rise to behavior in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We performed multi-unit recordings from ON and OFF sensory pyramidal cells in response to stimuli whose amplitude (i.e., envelope) varied in time, before and after electrical stimulation of the raphe nuclei. Overall, raphe stimulation increased population coding by ON- but not by OFF-type cells, despite both cell types showing similar sensitivities to the stimulus at the single neuron level. Surprisingly, only changes in population coding by ON-type cells were correlated with changes in behavioral responses. Taken together, our results show that neuromodulation differentially affects ON vs. OFF-type cells in order to enhance perception of behaviorally relevant sensory input.
Collapse
|
3
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
4
|
Flexible navigational computations in the Drosophila central complex. Curr Opin Neurobiol 2022; 73:102514. [DOI: 10.1016/j.conb.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
|
5
|
Pacheco DA, Thiberge SY, Pnevmatikakis E, Murthy M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat Neurosci 2021; 24:93-104. [PMID: 33230320 PMCID: PMC7783861 DOI: 10.1038/s41593-020-00743-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
Sensory pathways are typically studied by starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analyses of activity toward the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of ongoing movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Collapse
Affiliation(s)
- Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Eftychios Pnevmatikakis
- Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Agrawal S, Dickinson ES, Sustar A, Gurung P, Shepherd D, Truman JW, Tuthill JC. Central processing of leg proprioception in Drosophila. eLife 2020; 9:e60299. [PMID: 33263281 PMCID: PMC7752136 DOI: 10.7554/elife.60299] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Anne Sustar
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - David Shepherd
- School of Natural Sciences, Bangor UniversityBangorUnited Kingdom
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
7
|
Hampel S, Eichler K, Yamada D, Bock DD, Kamikouchi A, Seeds AM. Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. eLife 2020; 9:e59976. [PMID: 33103999 PMCID: PMC7652415 DOI: 10.7554/elife.59976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.
Collapse
Affiliation(s)
- Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Daichi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
8
|
Okubo TS, Patella P, D'Alessandro I, Wilson RI. A Neural Network for Wind-Guided Compass Navigation. Neuron 2020; 107:924-940.e18. [PMID: 32681825 PMCID: PMC7507644 DOI: 10.1016/j.neuron.2020.06.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/27/2022]
Abstract
Spatial maps in the brain are most accurate when they are linked to external sensory cues. Here, we show that the compass in the Drosophila brain is linked to the direction of the wind. Shifting the wind rightward rotates the compass as if the fly were turning leftward, and vice versa. We describe the mechanisms of several computations that integrate wind information into the compass. First, an intensity-invariant representation of wind direction is computed by comparing left-right mechanosensory signals. Then, signals are reformatted to reduce the coding biases inherent in peripheral mechanics, and wind cues are brought into the same circular coordinate system that represents visual cues and self-motion signals. Because the compass incorporates both mechanosensory and visual cues, it should enable navigation under conditions where no single cue is consistently reliable. These results show how local sensory signals can be transformed into a global, multimodal, abstract representation of space.
Collapse
Affiliation(s)
- Tatsuo S Okubo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Paola Patella
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Hofmann V, Chacron MJ. Neuronal On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Sci Rep 2020; 10:10194. [PMID: 32576916 PMCID: PMC7311526 DOI: 10.1038/s41598-020-67258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/04/2020] [Indexed: 11/14/2022] Open
Abstract
Understanding the mechanisms by which neuronal population activity gives rise to perception and behavior remains a central question in systems neuroscience. Such understanding is complicated by the fact that natural stimuli often have complex structure. Here we investigated how heterogeneities within a sensory neuron population influence the coding of a noisy stimulus waveform (i.e., the noise) and its behaviorally relevant envelope signal (i.e., the signal). We found that On- and Off-type neurons displayed more heterogeneities in their responses to the noise than in their responses to the signal. These differences in heterogeneities had important consequences when quantifying response similarity between pairs of neurons. Indeed, the larger response heterogeneity displayed by On- and Off-type neurons made their pairwise responses to the noise on average more independent than when instead considering pairs of On-type or Off-type neurons. Such relative independence allowed for better averaging out of the noise response when pooling neural activities in a mixed-type (i.e., On- and Off-type) than for same-type (i.e., only On-type or only Off-type), thereby leading to greater information transmission about the signal. Our results thus reveal a function for the combined activities of On- and Off-type neurons towards improving information transmission of envelope stimuli at the population level. Our results will likely generalize because natural stimuli across modalities are characterized by a stimulus waveform whose envelope varies independently as well as because On- and Off-type neurons are observed across systems and species.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
10
|
Neural Networks: How a Multi-Layer Network Learns to Disentangle Exogenous from Self-Generated Signals. Curr Biol 2020; 30:R224-R226. [PMID: 32155426 DOI: 10.1016/j.cub.2020.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Artificial multi-layer networks can learn difficult tasks, such as recognizing faces, but their architecture and learning rules appear to be very different from those of biological neural networks. Experimental and computational studies of a two-layered biological neural network have revealed how the learning rules used in artificial neural networks can be efficiently implemented by neurons with complex dynamics and precisely organized connectivity.
Collapse
|
11
|
Suver MP, Matheson AMM, Sarkar S, Damiata M, Schoppik D, Nagel KI. Encoding of Wind Direction by Central Neurons in Drosophila. Neuron 2019; 102:828-842.e7. [PMID: 30948249 PMCID: PMC6533146 DOI: 10.1016/j.neuron.2019.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
Collapse
Affiliation(s)
- Marie P Suver
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Andrew M M Matheson
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sinekdha Sarkar
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Matthew Damiata
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - David Schoppik
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Katherine I Nagel
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
12
|
Batchelor AV, Wilson RI. Sound localization behavior in Drosophila melanogaster depends on inter-antenna vibration amplitude comparisons. ACTA ACUST UNITED AC 2019; 222:222/3/jeb191213. [PMID: 30733260 DOI: 10.1242/jeb.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022]
Abstract
Drosophila melanogaster hear with their antennae: sound evokes vibration of the distal antennal segment, and this vibration is transduced by specialized mechanoreceptor cells. The left and right antennae vibrate preferentially in response to sounds arising from different azimuthal angles. Therefore, by comparing signals from the two antennae, it should be possible to obtain information about the azimuthal angle of a sound source. However, behavioral evidence of sound localization has not been reported in Drosophila Here, we show that walking D. melanogaster do indeed turn in response to lateralized sounds. We confirm that this behavior is evoked by vibrations of the distal antennal segment. The rule for turning is different for sounds arriving from different locations: flies turn toward sounds in their front hemifield, but they turn away from sounds in their rear hemifield, and they do not turn at all in response to sounds from 90 or -90 deg. All of these findings can be explained by a simple rule: the fly steers away from the antenna with the larger vibration amplitude. Finally, we show that these behaviors generalize to sound stimuli with diverse spectro-temporal features, and that these behaviors are found in both sexes. Our findings demonstrate the behavioral relevance of the antenna's directional tuning properties. They also pave the way for investigating the neural implementation of sound localization, as well as the potential roles of sound-guided steering in courtship and exploration.
Collapse
Affiliation(s)
- Alexandra V Batchelor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
13
|
Lapshin DN, Vorontsov DD. Directional and frequency characteristics of auditory neurons in Culex male mosquitoes. J Exp Biol 2019; 222:jeb.208785. [DOI: 10.1242/jeb.208785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022]
Abstract
The paired auditory organ of mosquito, the Johnston's organ (JO), being the receiver of particle velocity component of sound, is directional by its structure. However, to date almost no physiological measurements of its directionality was done. In addition, the recent finding on the grouping of the JO auditory neurons into the antiphase pairs demanded confirmation by different methods. Using the vector superposition of the signals produced by two orthogonally oriented speakers, we measured the directional characteristics of individual units as well as their relations in physiologically distinguishable groups – pairs or triplets. The feedback stimulation method allowed to discriminate responses of the two simultaneously recorded units, and to show that they indeed responded in antiphase. Units of different frequency tuning as well as high-sensitive units (thresholds of 27 dB SPVL and below) were found in every angular sector of the JO, providing the mosquito with the ability to produce complex auditory behaviors.
Collapse
Affiliation(s)
- Dmitry N. Lapshin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) Bolshoy Karetny per. 19, Moscow, 127994, Russia
| | - Dmitry D. Vorontsov
- Koltzov Institute of Developmental Biology Russian Academy of Sciences Vavilova 26, Moscow, 119334, Russia
| |
Collapse
|
14
|
Currier TA, Nagel KI. Multisensory Control of Orientation in Tethered Flying Drosophila. Curr Biol 2018; 28:3533-3546.e6. [PMID: 30393038 DOI: 10.1016/j.cub.2018.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022]
Abstract
A longstanding goal of systems neuroscience is to quantitatively describe how the brain integrates sensory cues over time. Here, we develop a closed-loop orienting paradigm in Drosophila to study the algorithms by which cues from two modalities are integrated during ongoing behavior. We find that flies exhibit two behaviors when presented simultaneously with an attractive visual stripe and aversive wind cue. First, flies perform a turn sequence where they initially turn away from the wind but later turn back toward the stripe, suggesting dynamic sensory processing. Second, turns toward the stripe are slowed by the presence of competing wind, suggesting summation of turning drives. We develop a model in which signals from each modality are filtered in space and time to generate turn commands and then summed to produce ongoing orienting behavior. This computational framework correctly predicts behavioral dynamics for a range of stimulus intensities and spatial arrangements.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Medical Center, 435 E. 30(th) Street, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Katherine I Nagel
- Neuroscience Institute, New York University Medical Center, 435 E. 30(th) Street, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
15
|
Abstract
Understanding how activity patterns in specific neural circuits coordinate an animal’s behavior remains a key area of neuroscience research. Genetic tools and a brain of tractable complexity make Drosophila a premier model organism for these studies. Here, we review the wealth of reagents available to map and manipulate neuronal activity with light.
Collapse
|
16
|
Patella P, Wilson RI. Functional Maps of Mechanosensory Features in the Drosophila Brain. Curr Biol 2018; 28:1189-1203.e5. [PMID: 29657118 PMCID: PMC5952606 DOI: 10.1016/j.cub.2018.02.074] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 01/04/2023]
Abstract
Johnston's organ is the largest mechanosensory organ in Drosophila. It contributes to hearing, touch, vestibular sensing, proprioception, and wind sensing. In this study, we used in vivo 2-photon calcium imaging and unsupervised image segmentation to map the tuning properties of Johnston's organ neurons (JONs) at the site where their axons enter the brain. We then applied the same methodology to study two key brain regions that process signals from JONs: the antennal mechanosensory and motor center (AMMC) and the wedge, which is downstream of the AMMC. First, we identified a diversity of JON response types that tile frequency space and form a rough tonotopic map. Some JON response types are direction selective; others are specialized to encode amplitude modulations over a specific range (dynamic range fractionation). Next, we discovered that both the AMMC and the wedge contain a tonotopic map, with a significant increase in tonotopy-and a narrowing of frequency tuning-at the level of the wedge. Whereas the AMMC tonotopic map is unilateral, the wedge tonotopic map is bilateral. Finally, we identified a subregion of the AMMC/wedge that responds preferentially to the coherent rotation of the two mechanical organs in the same angular direction, indicative of oriented steady air flow (directional wind). Together, these maps reveal the broad organization of the primary and secondary mechanosensory regions of the brain. They provide a framework for future efforts to identify the specific cell types and mechanisms that underlie the hierarchical re-mapping of mechanosensory information in this system.
Collapse
Affiliation(s)
- Paola Patella
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
17
|
Fast intensity adaptation enhances the encoding of sound in Drosophila. Nat Commun 2018; 9:134. [PMID: 29317624 PMCID: PMC5760620 DOI: 10.1038/s41467-017-02453-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
To faithfully encode complex stimuli, sensory neurons should correct, via adaptation, for stimulus properties that corrupt pattern recognition. Here we investigate sound intensity adaptation in the Drosophila auditory system, which is largely devoted to processing courtship song. Mechanosensory neurons (JONs) in the antenna are sensitive not only to sound-induced antennal vibrations, but also to wind or gravity, which affect the antenna's mean position. Song pattern recognition, therefore, requires adaptation to antennal position (stimulus mean) in addition to sound intensity (stimulus variance). We discover fast variance adaptation in Drosophila JONs, which corrects for background noise over the behaviorally relevant intensity range. We determine where mean and variance adaptation arises and how they interact. A computational model explains our results using a sequence of subtractive and divisive adaptation modules, interleaved by rectification. These results lay the foundation for identifying the molecular and biophysical implementation of adaptation to the statistics of natural sensory stimuli.
Collapse
|
18
|
Azevedo AW, Wilson RI. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons. Neuron 2017; 96:446-460.e9. [PMID: 28943231 DOI: 10.1016/j.neuron.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/26/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na+ and K+ conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Carriot J, Jamali M, Cullen KE, Chacron MJ. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing. PLoS One 2017; 12:e0178664. [PMID: 28575032 PMCID: PMC5456318 DOI: 10.1371/journal.pone.0178664] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022] Open
Abstract
There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, Québec, Canada
| | - Mohsen Jamali
- Department of Physiology, McGill University, Montreal, Québec, Canada
| | | | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|