1
|
Jin B, W Gongwer M, A DeNardo L. Developmental changes in brain-wide fear memory networks. Neurobiol Learn Mem 2025; 219:108037. [PMID: 40032133 DOI: 10.1016/j.nlm.2025.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Memory retrieval involves coordinated activity across multiple brain regions. Yet how the organization of memory networks evolves throughout development remains poorly understood. In this study, we compared whole-brain functional networks that are active during contextual fear memory recall in infant, juvenile, and adult mice. Our analyses revealed that long-term memory networks change significantly across postnatal development. Infant fear memory networks are dense and heterogeneous, whereas adult networks are sparse and have a small-world topology. While hippocampal subregions were highly connected nodes at all ages, the cortex gained many functional connections across development. Different functional connections matured at different rates, but their developmental timing fell into three major categories: stepwise change between two ages, linear change across all ages, or inverted-U, with elevated functional connectivity in juveniles. Our work highlights how a subset of brain regions likely maintain important roles in fear memory encoding, but the functional connectivity of fear memory networks undergoes significant reorganization across development. Together, these results provide a blueprint for studying how correlated cellular activity in key areas distinctly regulates memory storage and retrieval across development.
Collapse
Affiliation(s)
- Benita Jin
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Gongwer
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Steiner NL, Purohit DC, Tiefenthaler CM, Mandyam CD. Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats. Brain Sci 2024; 14:431. [PMID: 38790410 PMCID: PMC11118749 DOI: 10.3390/brainsci14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.
Collapse
Affiliation(s)
- Noah L. Steiner
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
| | | | - Casey M. Tiefenthaler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
3
|
Staples MC, Herman MA, Lockner JW, Avchalumov Y, Kharidia KM, Janda KD, Roberto M, Mandyam CD. Isoxazole-9 reduces enhanced fear responses and retrieval in ethanol-dependent male rats. J Neurosci Res 2021; 99:3047-3065. [PMID: 34496069 PMCID: PMC10112848 DOI: 10.1002/jnr.24932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Plasticity in the dentate gyrus (DG) is strongly influenced by ethanol, and ethanol experience alters long-term memory consolidation dependent on the DG. However, it is unclear if DG plasticity plays a role in dysregulation of long-term memory consolidation during abstinence from chronic ethanol experience. Outbred male Wistar rats experienced 7 weeks of chronic intermittent ethanol vapor exposure (CIE). Seventy-two hours after CIE cessation, CIE and age-matched ethanol-naïve Air controls experienced auditory trace fear conditioning (TFC). Rats were tested for cue-mediated retrieval in the fear context either twenty-four hours (24 hr), ten days (10 days), or twenty-one days (21 days) later. CIE rats showed enhanced freezing behavior during TFC acquisition compared to Air rats. Air rats showed significant fear retrieval, and this behavior did not differ at the three time points. In CIE rats, fear retrieval increased over time during abstinence, indicating an incubation in fear responses. Enhanced retrieval at 21 days was associated with reduced structural and functional plasticity of ventral granule cell neurons (GCNs) and reduced expression of synaptic proteins important for neuronal plasticity. Systemic treatment with the drug Isoxazole-9 (Isx-9; small molecule that stimulates DG plasticity) during the last week and a half of CIE blocked altered acquisition and retrieval of fear memories in CIE rats during abstinence. Concurrently, Isx-9 modulated the structural and functional plasticity of ventral GCNs and the expression of synaptic proteins in the ventral DG. These findings identify that abstinence-induced disruption of fear memory consolidation occurs via altered plasticity within the ventral DG, and that Isx-9 prevented these effects.
Collapse
Affiliation(s)
| | - Melissa A. Herman
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jonathan W. Lockner
- Departments of Chemistry and Immunology, Scripps Research, La Jolla, CA, USA
| | | | | | - Kim D. Janda
- Departments of Chemistry and Immunology, Scripps Research, La Jolla, CA, USA
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Hein M, Lanquart JP, Loas G, Hubain P, Linkowski P. Alterations of neural network organization during REM sleep in women: implication for sex differences in vulnerability to mood disorders. Biol Sex Differ 2020; 11:22. [PMID: 32334638 PMCID: PMC7183628 DOI: 10.1186/s13293-020-00297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sleep plays an important role in vulnerability to mood disorders. However, despite the existence of sex differences in vulnerability to mood disorders, no study has yet investigated the sex effect on sleep network organization and its potential involvement in vulnerability to mood disorders. The aim of our study was to empirically investigate the sex effect on network organization during REM and slow-wave sleep using the effective connectivity measured by Granger causality. METHODS Polysomnographic data from 44 healthy individuals (28 men and 16 women) recruited prospectively were analysed. To obtain the 19 × 19 connectivity matrix of all possible pairwise combinations of electrodes by Granger causality method from our EEG data, we used the Toolbox MVGC multivariate Granger causality. The computation of the network measures was realized by importing these connectivity matrices into EEGNET Toolbox. RESULTS In men and women, all small-world coefficients obtained are compatible with a small-world network organization during REM and slow-wave sleep. However, compared to men, women present greater small-world coefficients during REM sleep as well as for all EEG bands during this sleep stage, which indicates the presence of a small-world network organization less marked during REM sleep as well as for all EEG bands during this sleep stage in women. In addition, in women, these small-world coefficients during REM sleep as well as for all EEG bands during this sleep stage are positively correlated with the presence of subclinical symptoms of depression. CONCLUSIONS Thus, the highlighting of these sex differences in network organization during REM sleep indicates the presence of differences in the global and local processing of information during sleep between women and men. In addition, this small-world network organization less marked during REM sleep appears to be a marker of vulnerability to mood disorders specific to women, which opens up new perspectives in understanding sex differences in the occurrence of mood disorders.
Collapse
Affiliation(s)
- Matthieu Hein
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium.
| | - Jean-Pol Lanquart
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| | - Gwénolé Loas
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| | - Philippe Hubain
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| | - Paul Linkowski
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| |
Collapse
|
5
|
Hein M, Lanquart JP, Loas G, Hubain P, Linkowski P. Alterations of neural network organisation during rapid eye movement sleep and slow-wave sleep in major depression: Implications for diagnosis, classification, and treatment. Psychiatry Res Neuroimaging 2019; 291:71-78. [PMID: 31416044 DOI: 10.1016/j.pscychresns.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023]
Abstract
The aim of this study was to empirically investigate the network organisation during rapid eye movement sleep (REMS) and slow-wave sleep (SWS) using the effective connectivity measured using the Granger causality to identify new potential biomarkers for the diagnosis, classification, and potential favourable response to treatment in major depression. Polysomnographic data were analysed from 24 healthy individuals and 16 major depressed individuals recruited prospectively. To obtain the 19×19 connectivity matrix of all possible pairwise combinations of electrodes by the Granger causality method from our electroencephalographic data, we used the Toolbox MVGC multivariate Granger causality. The computation of network measures was realised by importing these connectivity matrices into the EEGNET Toolbox. Major depressed individuals (versus healthy individuals) and those with endogenous depression (versus those with neurotic depression) present alterations of small-world network organisation during REMS, whereas major depressed individuals with potential favourable response to electroconvulsive therapy (versus those with potential unfavourable response) have a less efficient small-world network organisation during SWS. Thus, alterations in network organisation during REMS could be biomarkers for the diagnosis and classification of major depressive episodes, whereas alterations of network organisation during SWS could be a biomarker to predict potential favourable response to treatment by electroconvulsive therapy.
Collapse
Affiliation(s)
- Matthieu Hein
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université Libre de Bruxelles, ULB, Brussels, Belgium.
| | - Jean-Pol Lanquart
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université Libre de Bruxelles, ULB, Brussels, Belgium
| | - Gwenolé Loas
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université Libre de Bruxelles, ULB, Brussels, Belgium
| | - Philippe Hubain
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université Libre de Bruxelles, ULB, Brussels, Belgium
| | - Paul Linkowski
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université Libre de Bruxelles, ULB, Brussels, Belgium
| |
Collapse
|
6
|
Hippocampal neural progenitor cells play a distinct role in fear memory retrieval in male and female CIE rats. Neuropharmacology 2018; 143:239-249. [PMID: 30273595 DOI: 10.1016/j.neuropharm.2018.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Adult male and female GFAP-TK transgenic rats experienced six weeks of chronic intermittent ethanol vapor inhalation (CIE). During the last week of CIE, a subset of male and female TK rats were fed with Valcyte to ablate neural progenitor cells (NPCs). Seventy-two hours after CIE cessation, all CIE and age-matched ethanol naïve controls experienced auditory trace fear conditioning (TFC). Twenty-four hours later all animals were tested for cue-mediated retrieval in the fear context. Adult male CIE rats showed a significant burst in NPCs paralleled by reduction in fear retrieval compared to naïve controls and Valcyte treated CIE rats. Adult female CIE rats did not show a burst in NPCs and showed similar fear retrieval compared to naïve controls and Valcyte treated CIE rats, indicating that CIE-mediated impairment in fear memory and its regulation by NPCs was sex dependent. Valcyte significantly reduced Ki-67 and NeuroD labeled cells in the dentate gyrus (DG) in both sexes, demonstrating a role for NPCs in reduced fear retrieval in males. Valcyte prevented adaptations in GluN2A receptor expression and synaptoporin density in the DG in males, indicating that NPCs contributed to alterations in plasticity-related proteins and mossy fiber projections that were associated with reduced fear retrieval. These data suggest that DG NPCs born during withdrawal and early abstinence from CIE are aberrant, and could play a role in weakening long-term memory consolidation dependent on the hippocampus.
Collapse
|
7
|
Hein M, Lanquart JP, Loas G, Hubain P, Linkowski P. The sleep network organization during slow-wave sleep is more stable with age and has small-world characteristics more marked than during REM sleep in healthy men. Neurosci Res 2018; 145:30-38. [PMID: 30120961 DOI: 10.1016/j.neures.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
Sleep plays an important role in cognitive functioning. However, few studies have investigated the sleep network organization. The aim of our study was to empirically investigate the presence and the stability with age of a small-world network organization during REM and slow-wave sleep using the effective connectivity measured by the Granger causality. Polysomnographic data from 30 healthy men recruited prospectively were analysed. To obtain the 19 × 19 connectivity matrix of all possible pairwise combinations of electrodes by the Granger causality method from our EEG data, we used the Toolbox MVGC multivariate Granger causality. The computation of the network measures was realised by importing these connectivity matrices into the EEGNET Toolbox. Even if all small-world coefficients obtained are compatible with a small-world network organization during REM and slow-wave sleep, slow-wave sleep seems to have a small-world network organization more marked than REM sleep. Moreover, the sleep network organization is affected greater by age during REM sleep than during slow-wave sleep. In healthy individuals, the highlighting of a sleep network organization during slow-wave sleep more stable with age and with small-world characteristics more marked than during REM sleep may help to better understand the global and local processing of information during sleep.
Collapse
Affiliation(s)
- Matthieu Hein
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Brussels, Belgium.
| | - Jean-Pol Lanquart
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Brussels, Belgium
| | - Gwénolé Loas
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Brussels, Belgium
| | - Philippe Hubain
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Brussels, Belgium
| | - Paul Linkowski
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Brussels, Belgium
| |
Collapse
|