1
|
Azimzadeh JB, Quiñones PM, Oghalai JS, Ricci AJ. Infrared light stimulates the cochlea through a mechanical displacement detected and amplified by hair cells. Proc Natl Acad Sci U S A 2025; 122:e2422076122. [PMID: 40273108 PMCID: PMC12054842 DOI: 10.1073/pnas.2422076122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/01/2025] [Indexed: 04/26/2025] Open
Abstract
Although cochlear implants (CI) are the standard of care for profound sensorineural hearing loss they are technically constrained by the tendency of electrical current to spread within the fluid-filled chambers of the cochlea. This limits the resolution of individual electrodes and patients' perceptions of complex sounds. Infrared irradiation has been proposed as an alternative to electrical stimulation because it can elicit auditory responses while being spatially constrained, theoretically promising higher-fidelity hearing for the deaf. However, conflicting reports locate the site of infrared excitation at spiral ganglia neurons or hair cells. We use a combination of genetic, pharmacological, optical, and electrophysiological tools to determine the site of action of infrared irradiation. Infrared-evoked cochlear potentials are composed of two peaks: one driven by hair cells (the microphonic) and a second driven by spiral ganglion neurons (the neural response). Manipulations that prevented hair cell synaptic activity abolished the neural component, while manipulations blocking hair cell mechanotransduction abolished all responses, suggesting a mechanical component to the infrared response. Optical coherence tomography (OCT) confirmed that infrared irradiation creates a mechanical stimulus that is both amplified and detected by hair cells. Because infrared irradiation does not stimulate spiral ganglion neurons directly, it is unlikely to replace the electrical CI.
Collapse
Affiliation(s)
- Julien B. Azimzadeh
- Department of Otolaryngology, Stanford University School of Medicine, StanfordCA94304
| | - Patricia M. Quiñones
- Department of Otolaryngology, University of Southern California, Los Angeles, CA90033
| | - John S. Oghalai
- Department of Otolaryngology, University of Southern California, Los Angeles, CA90033
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90033
| | - Anthony J. Ricci
- Department of Otolaryngology, Stanford University School of Medicine, StanfordCA94304
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA d:94304
| |
Collapse
|
2
|
Schulz-Hildebrandt H, Spasic S, Hou F, Ting KC, Batts S, Tearney G, Stankovic KM. Dynamic micro-optical coherence tomography enables structural and metabolic imaging of the mammalian cochlea. Front Mol Neurosci 2024; 17:1436837. [PMID: 39449964 PMCID: PMC11499234 DOI: 10.3389/fnmol.2024.1436837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging. Previously, we developed micro-optical coherence tomography (μOCT) as a platform for otologic imaging in animal models and human cochleae. Here we report on advancing μOCT technology to obtain simultaneously acquired and co-localized images of cell viability/metabolic activity through dynamic μOCT (DμOCT) imaging of intracellular motion. DμOCT obtains cross-sectional images of ATP-dependent movement of intracellular organelles and cytoskeletal polymerization by acquiring sequential μOCT images and computing intensity fluctuation frequency metrics on a pixel-wise basis. Using a customized benchtop DμOCT system, we demonstrate the detailed resolution of anatomical and metabolic features of cells within the organ of Corti, via an apical cochleostomy, in freshly-excised adult mouse cochleae. Further, we show that DμOCT is capable of capturing rapid changes in cochlear cell metabolism following an ototoxic insult to induce cell death and actin stabilization. Notably, as few as 6 frames can be used to reconstruct cochlear DμOCT images with sufficient detail to discern individual cells and their metabolic state. Taken together, these results motivate future development of a DμOCT imaging probe for cellular and metabolic diagnosis of SNHL in humans.
Collapse
Affiliation(s)
- Hinnerk Schulz-Hildebrandt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Svetolik Spasic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Fang Hou
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kuan-Chung Ting
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
4
|
Cao B, Gu H, Wang R. Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state. Cogn Neurodyn 2022; 16:1163-1188. [PMID: 36237408 PMCID: PMC9508319 DOI: 10.1007/s11571-021-09745-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
The forced oscillations of hair bundle of inner hair cells of auditory nervous system evoked by external force from steady state are related to the fast adaption of hair cells, which are very important for auditory amplification. In the present paper, comprehensive and deep understandings to nonlinear dynamics of forced oscillations are acquired in four aspects. Firstly, the complex dynamics underlying the twitch (fast recoil of displacement X which is fast variable) induced from Case-1 and Case-2 steady states by external pulse force are obtained. With help of vector fields and nullclines, the phase trajectory of forced oscillations is identified to be an evolution process between two equilibrium points corresponding to zero force and pulse force, respectively, and then the twitch is obtained as the behavior running along the nonlinear part of X-nullcline. Especially, twitch observed in experiment are classified into 6 types, which are induced by negative change of force, negative and positive changes of force, and positive change of force, respectively, and further build relationships to three subcases of Case-2 steady state with N-shaped X-nullcline (equilibrium point locates on the left, middle, and right branches of X-nullcline, respectively). Secondly, the experimental observation of fatigue of twitch induced by continual two pulse forces, i.e. the reduced amplitude of the latter twitch when interval between two forces is short, is also explained as a nonlinear behavior beginning from an initial value different from that of the former one. Thirdly, the experimental observation of transition between sustained oscillations and steady state induced by pulse force can be simulated for Case-1 steady state with Z-shaped X-nullcline instead of Case-2, due to that there exists bifurcations with respect to external force for Case-1 while no bifurcations for Case-2. Last, the threshold phenomenon induced by simple pulse stimulation exists for Case-1 steady state rather than Case-2, due to that the upper and lower branches of Z-shaped X-nullcline close to the middle branch exhibit coexisting behaviors of variable X while N-shaped X-nullcline does not. The nonlinear dynamics of forced oscillations are helpful for explanations to the complex experimental observations, which presents potential measures to modulate the functions of twitch such as the fast adaption.
Collapse
Affiliation(s)
- Ben Cao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Runxia Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| |
Collapse
|
5
|
Tucci G, Roldán É, Gambassi A, Belousov R, Berger F, Alonso RG, Hudspeth AJ. Modeling Active Non-Markovian Oscillations. PHYSICAL REVIEW LETTERS 2022; 129:030603. [PMID: 35905355 DOI: 10.1103/physrevlett.129.030603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Modeling noisy oscillations of active systems is one of the current challenges in physics and biology. Because the physical mechanisms of such processes are often difficult to identify, we propose a linear stochastic model driven by a non-Markovian bistable noise that is capable of generating self-sustained periodic oscillation. We derive analytical predictions for most relevant dynamical and thermodynamic properties of the model. This minimal model turns out to describe accurately bistablelike oscillatory motion of hair bundles in bullfrog sacculus, extracted from experimental data. Based on and in agreement with these data, we estimate the power required to sustain such active oscillations to be of the order of 100 k_{B}T per oscillation cycle.
Collapse
Affiliation(s)
- G Tucci
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - É Roldán
- ICTP-The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - A Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - R Belousov
- ICTP-The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- EMBL-European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - F Berger
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | - R G Alonso
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
6
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
7
|
Jiang W, Wang Z, Xiao S, Zeng D, Wu Z, Peng C, Chen F. Pulsed infrared stimulation evoked electrical potential in mouse vestibular system. Neurosci Lett 2022; 775:136510. [DOI: 10.1016/j.neulet.2022.136510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
8
|
Abeytunge S, Gianoli F, Hudspeth AJ, Kozlov AS. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure. eLife 2021; 10:e65930. [PMID: 34227465 PMCID: PMC8363269 DOI: 10.7554/elife.65930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Hair cells, the receptors of the inner ear, detect sounds by transducing mechanical vibrations into electrical signals. From the top surface of each hair cell protrudes a mechanical antenna, the hair bundle, which the cell uses to detect and amplify auditory stimuli, thus sharpening frequency selectivity and providing a broad dynamic range. Current methods for mechanically stimulating hair bundles are too slow to encompass the frequency range of mammalian hearing and are plagued by inconsistencies. To overcome these challenges, we have developed a method to move individual hair bundles with photonic force. This technique uses an optical fiber whose tip is tapered to a diameter of a few micrometers and endowed with a ball lens to minimize divergence of the light beam. Here we describe the fabrication, characterization, and application of this optical system and demonstrate the rapid application of photonic force to vestibular and cochlear hair cells.
Collapse
Affiliation(s)
- Sanjeewa Abeytunge
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Howard Hughes Medical Institute andLaboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Francesco Gianoli
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - AJ Hudspeth
- Howard Hughes Medical Institute andLaboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Andrei S Kozlov
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Belousov R, Berger F, Hudspeth AJ. Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol oscillator driven by white noise. Phys Rev E 2020; 102:032209. [PMID: 33075951 DOI: 10.1103/physreve.102.032209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/16/2020] [Indexed: 11/07/2022]
Abstract
The Van der Pol equation is a paradigmatic model of relaxation oscillations. This remarkable nonlinear phenomenon of self-sustained oscillatory motion underlies important rhythmic processes in nature and electrical engineering. Relaxation oscillations in a real system are usually coupled to environmental noise, which further enriches their dynamics, but makes theoretical analysis of such systems and determination of the equation parameter values a difficult task. In a companion paper we have proposed an analytic approach to a similar problem for another classical nonlinear model-the bistable Duffing oscillator. Here we extend our techniques to the case of the Van der Pol equation driven by white noise. We analyze the statistics of solutions and propose a method to estimate parameter values from the oscillator's time series. We use experimental data of active oscillations in a biophysical system to demonstrate how our method applies to real observations and can be generalized for more complex models.
Collapse
Affiliation(s)
- Roman Belousov
- Abdus Salam International Centre for Theoretical Physics Strada Costiera 11, 34151, Trieste, Italy
| | - Florian Berger
- Howard Hughes Medical Institute, Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
10
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
11
|
Viral Transfer of Mini-Otoferlins Partially Restores the Fast Component of Exocytosis and Uncovers Ultrafast Endocytosis in Auditory Hair Cells of Otoferlin Knock-Out Mice. J Neurosci 2019; 39:3394-3411. [PMID: 30833506 DOI: 10.1523/jneurosci.1550-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
Transmitter release at auditory inner hair cell (IHC) ribbon synapses involves exocytosis of glutamatergic vesicles during voltage activation of L-type Cav1.3 calcium channels. At these synapses, the fast and indefatigable release of synaptic vesicles by IHCs is controlled by otoferlin, a six-C2-domain (C2-ABCDEF) protein that functions as a high-affinity Ca2+ sensor. The molecular events by which each otoferlin C2 domain contributes to the regulation of the synaptic vesicle cycle in IHCs are still incompletely understood. Here, we investigate their role using a cochlear viral cDNA transfer approach in vivo, where IHCs of mouse lacking otoferlin (Otof -/- mice of both sexes) were virally transduced with cDNAs of various mini-otoferlins. Using patch-clamp recordings and membrane capacitance measurements, we show that the viral transfer of mini-otoferlin containing C2-ACEF, C2-EF, or C2-DEF partially restores the fast exocytotic component in Otof -/- mouse IHCs. The restoration was much less efficient with C2-ACDF, underlining the importance of the C2-EF domain. None of the mini-otoferlins tested restored the sustained component of vesicle release, explaining the absence of hearing recovery. The restoration of the fast exocytotic component in the transduced Otof -/- IHCs was also associated with a recovery of Ca2+ currents with normal amplitude and fast time inactivation, confirming that the C-terminal C2 domains of otoferlin are essential for normal gating of Cav1.3 channels. Finally, the reintroduction of the mini-otoferlins C2-EF, C2-DEF, or C2-ACEF allowed us to uncover and characterize for the first time a dynamin-dependent ultrafast endocytosis in IHCs.SIGNIFICANCE STATEMENT Otoferlin, a large six-C2-domain protein, is essential for synaptic vesicle exocytosis at auditory hair cell ribbon synapses. Here, we show that the viral expression of truncated forms of otoferlin (C2-EF, C2-DEF, and C2-ACEF) can partially rescue the fast and transient release component of exocytosis in mouse hair cells lacking otoferlin, yet cannot sustain exocytosis after long repeated stimulation. Remarkably, these hair cells also display a dynamin-dependent ultrafast endocytosis. Overall, our study uncovers the pleiotropic role of otoferlin in the hair cell synaptic vesicle cycle, notably in triggering both ultrafast exocytosis and endocytosis and recruiting synaptic vesicles to the active zone.
Collapse
|