1
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. Mitochondrial plasticity: An emergent concept in neuronal plasticity and memory. Neurobiol Dis 2024; 203:106740. [PMID: 39557174 DOI: 10.1016/j.nbd.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Mitochondria are classically viewed as 'on demand' energy suppliers to neurons in support of their activity. In order to adapt to a wide range of demands, mitochondria need to be highly dynamic and capable of adjusting their metabolic activity, shape, and localization. Although these plastic properties give them a central support role in basal neuronal physiology, recent lines of evidence point toward a role for mitochondria in the regulation of high-order cognitive functions such as memory formation. In this review, we discuss the interplay between mitochondrial function and neural plasticity in sustaining memory formation at the molecular and cellular levels. First, we explore the global significance of mitochondria in memory formation. Then, we will detail the memory-relevant cellular and molecular mechanisms of mitochondrial plasticity. Finally, we focus on those mitochondrial functions, including but not limited to ATP production, that give mitochondria their pivotal role in memory formation. Altogether, this review highlights the central role of mitochondrial structural and functional plasticity in supporting and regulating neuronal plasticity and memory.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
2
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. eLife 2024; 13:RP92085. [PMID: 39475218 PMCID: PMC11524582 DOI: 10.7554/elife.92085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
3
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561186. [PMID: 38948698 PMCID: PMC11212906 DOI: 10.1101/2023.10.06.561186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| |
Collapse
|
4
|
Ho DM, Shaban M, Mahmood F, Ganguly P, Todeschini L, Van Vactor D, Artavanis-Tsakonas S. cAMP/PKA signaling regulates TDP-43 aggregation and mislocalization. Proc Natl Acad Sci U S A 2024; 121:e2400732121. [PMID: 38838021 PMCID: PMC11181030 DOI: 10.1073/pnas.2400732121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.
Collapse
Affiliation(s)
- Diana M. Ho
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA02115
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA02115
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Payel Ganguly
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | | | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
5
|
Abstract
The brain is designed not only with molecules and cellular processes that help to form memories but also with molecules and cellular processes that suppress the formation and retention of memory. The latter processes are critical for an efficient memory management system, given the vast amount of information that each person experiences in their daily activities and that most of this information becomes irrelevant with time. Thus, efficiency dictates that the brain should have processes for selecting the most critical information for storage and suppressing the irrelevant or forgetting it later should it escape the initial filters. Such memory suppressor molecules and processes are revealed by genetic or pharmacologic insults that lead to enhanced memory expression. We review here the predominant memory suppressor molecules and processes that have recently been discovered. They are diverse, as expected, because the brain is complex and employs many different strategies and mechanisms to form memories. They include the gene-repressive actions of small noncoding RNAs, repressors of protein synthesis, cAMP-mediated gene expression pathways, inter- and intracellular signaling pathways for normal forgetting, and others. A deep understanding of memory suppressor molecules and processes is necessary to fully comprehend how the brain forms, stabilizes, and retrieves memories and to reveal how brain disorders disrupt memory.
Collapse
Affiliation(s)
- Nathaniel C. Noyes
- Department of Neuroscience, University of Florida Scripps Biomedical Research, Jupiter, FL, USA
| | - Ronald L. Davis
- Department of Neuroscience, University of Florida Scripps Biomedical Research, Jupiter, FL, USA
| |
Collapse
|
6
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
7
|
Pavlowsky A, Comyn T, Minatchy J, Geny D, Bun P, Danglot L, Preat T, Plaçais PY. Spaced training activates Miro/Milton-dependent mitochondrial dynamics in neuronal axons to sustain long-term memory. Curr Biol 2024; 34:1904-1917.e6. [PMID: 38642548 DOI: 10.1016/j.cub.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.
Collapse
Affiliation(s)
- Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - David Geny
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Philippe Bun
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Lydia Danglot
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
8
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
9
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
10
|
Grob R, Müller VL, Grübel K, Rössler W, Fleischmann PN. Importance of magnetic information for neuronal plasticity in desert ants. Proc Natl Acad Sci U S A 2024; 121:e2320764121. [PMID: 38346192 PMCID: PMC10895258 DOI: 10.1073/pnas.2320764121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Many animal species rely on the Earth's magnetic field during navigation, but where in the brain magnetic information is processed is still unknown. To unravel this, we manipulated the natural magnetic field at the nest entrance of Cataglyphis desert ants and investigated how this affects relevant brain regions during early compass calibration. We found that manipulating the Earth's magnetic field has profound effects on neuronal plasticity in two sensory integration centers. Magnetic field manipulations interfere with a typical look-back behavior during learning walks of naive ants. Most importantly, structural analyses in the ants' neuronal compass (central complex) and memory centers (mushroom bodies) demonstrate that magnetic information affects neuronal plasticity during early visual learning. This suggests that magnetic information does not only serve as a compass cue for navigation but also as a global reference system crucial for spatial memory formation. We propose a neural circuit for integration of magnetic information into visual guidance networks in the ant brain. Taken together, our results provide an insight into the neural substrate for magnetic navigation in insects.
Collapse
Affiliation(s)
- Robin Grob
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7034Trondheim, Norway
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Valentin L. Müller
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Kornelia Grübel
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Wolfgang Rössler
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
| | - Pauline N. Fleischmann
- Division of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074Würzburg, Germany
- Department V - School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26129Oldenburg, Germany
| |
Collapse
|
11
|
Yamazaki D, Maeyama Y, Tabata T. Combinatory Actions of Co-transmitters in Dopaminergic Systems Modulate Drosophila Olfactory Memories. J Neurosci 2023; 43:8294-8305. [PMID: 37429719 PMCID: PMC10711700 DOI: 10.1523/jneurosci.2152-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/30/2023] [Accepted: 05/27/2023] [Indexed: 07/12/2023] Open
Abstract
Dopamine neurons (DANs) are extensively studied in the context of associative learning, in both vertebrates and invertebrates. In the acquisition of male and female Drosophila olfactory memory, the PAM cluster of DANs provides the reward signal, and the PPL1 cluster of DANs sends the punishment signal to the Kenyon cells (KCs) of mushroom bodies, the center for memory formation. However, thermo-genetical activation of the PPL1 DANs after memory acquisition impaired aversive memory, and that of the PAM DANs impaired appetitive memory. We demonstrate that the knockdown of glutamate decarboxylase, which catalyzes glutamate conversion to GABA in PAM DANs, potentiated the appetitive memory. In addition, the knockdown of glutamate transporter in PPL1 DANs potentiated aversive memory, suggesting that GABA and glutamate co-transmitters act in an inhibitory manner in olfactory memory formation. We also found that, in γKCs, the Rdl receptor for GABA and the mGluR DmGluRA mediate the inhibition. Although multiple-spaced training is required to form long-term aversive memory, a single cycle of training was sufficient to develop long-term memory when the glutamate transporter was knocked down, in even a single subset of PPL1 DANs. Our results suggest that the mGluR signaling pathway may set a threshold for memory acquisition to allow the organisms' behaviors to adapt to changing physiological conditions and environments.SIGNIFICANCE STATEMENT In the acquisition of olfactory memory in Drosophila, the PAM cluster of dopamine neurons (DANs) mediates the reward signal, while the PPL1 cluster of DANs conveys the punishment signal to the Kenyon cells of the mushroom bodies, which serve as the center for memory formation. We found that GABA co-transmitters in the PAM DANs and glutamate co-transmitters in the PPL1 DANs inhibit olfactory memory formation. Our findings demonstrate that long-term memory acquisition, which typically necessitates multiple-spaced training sessions to establish aversive memory, can be triggered with a single training cycle in cases where the glutamate co-transmission is inhibited, even within a single subset of PPL1 DANs, suggesting that the glutamate co-transmission may modulate the threshold for memory acquisition.
Collapse
Affiliation(s)
- Daisuke Yamazaki
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yuko Maeyama
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tetsuya Tabata
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| |
Collapse
|
12
|
Chen CC, Lin HW, Feng KL, Tseng DW, de Belle JS, Chiang AS. A subset of cholinergic mushroom body neurons blocks long-term memory formation in Drosophila. Cell Rep 2023; 42:112974. [PMID: 37590142 DOI: 10.1016/j.celrep.2023.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/22/2022] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Long-term memory (LTM) requires learning-induced synthesis of new proteins allocated to specific neurons and synapses in a neural circuit. Not all learned information, however, becomes permanent memory. How the brain gates relevant information into LTM remains unclear. In Drosophila adults, weak learning after a single training session in an olfactory aversive task typically does not induce protein-synthesis-dependent LTM. Instead, strong learning after multiple spaced training sessions is required. Here, we report that pre-synaptic active-zone protein synthesis and cholinergic signaling from the early α/β subset of mushroom body (MB) neurons produce a downstream inhibitory effect on LTM formation. When we eliminated inhibitory signaling from these neurons, weak learning was then sufficient to form LTM. This bidirectional circuit mechanism modulates the transition between distinct memory phase functions in different subpopulations of MB neurons in the olfactory memory circuit.
Collapse
Affiliation(s)
- Chun-Chao Chen
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hsuan-Wen Lin
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Der-Wan Tseng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA; School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan; Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093-0526, USA.
| |
Collapse
|
13
|
Davis RL. Learning and memory using Drosophila melanogaster: a focus on advances made in the fifth decade of research. Genetics 2023; 224:iyad085. [PMID: 37212449 PMCID: PMC10411608 DOI: 10.1093/genetics/iyad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
In the last decade, researchers using Drosophila melanogaster have made extraordinary progress in uncovering the mysteries underlying learning and memory. This progress has been propelled by the amazing toolkit available that affords combined behavioral, molecular, electrophysiological, and systems neuroscience approaches. The arduous reconstruction of electron microscopic images resulted in a first-generation connectome of the adult and larval brain, revealing complex structural interconnections between memory-related neurons. This serves as substrate for future investigations on these connections and for building complete circuits from sensory cue detection to changes in motor behavior. Mushroom body output neurons (MBOn) were discovered, which individually forward information from discrete and non-overlapping compartments of the axons of mushroom body neurons (MBn). These neurons mirror the previously discovered tiling of mushroom body axons by inputs from dopamine neurons and have led to a model that ascribes the valence of the learning event, either appetitive or aversive, to the activity of different populations of dopamine neurons and the balance of MBOn activity in promoting avoidance or approach behavior. Studies of the calyx, which houses the MBn dendrites, have revealed a beautiful microglomeruluar organization and structural changes of synapses that occur with long-term memory (LTM) formation. Larval learning has advanced, positioning it to possibly lead in producing new conceptual insights due to its markedly simpler structure over the adult brain. Advances were made in how cAMP response element-binding protein interacts with protein kinases and other transcription factors to promote the formation of LTM. New insights were made on Orb2, a prion-like protein that forms oligomers to enhance synaptic protein synthesis required for LTM formation. Finally, Drosophila research has pioneered our understanding of the mechanisms that mediate permanent and transient active forgetting, an important function of the brain along with acquisition, consolidation, and retrieval. This was catalyzed partly by the identification of memory suppressor genes-genes whose normal function is to limit memory formation.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. Transl Psychiatry 2023; 13:226. [PMID: 37355701 DOI: 10.1038/s41398-023-02521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence-activated cell sorting of Kenyon cells, followed by either bulk or single-cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalopram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Zeng J, Li X, Zhang R, Lv M, Wang Y, Tan K, Xia X, Wan J, Jing M, Zhang X, Li Y, Yang Y, Wang L, Chu J, Li Y, Li Y. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 2023; 111:1118-1135.e5. [PMID: 36706757 PMCID: PMC11152601 DOI: 10.1016/j.neuron.2022.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/03/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for associative learning; however, the mechanism regulating the duration of this temporal window remains unclear. Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB). Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine (ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap. Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal relationship between environmental events.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China
| | - Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuning Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
16
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
17
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. RESEARCH SQUARE 2023:rs.3.rs-2626506. [PMID: 36993644 PMCID: PMC10055553 DOI: 10.21203/rs.3.rs-2626506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence activated cell sorting of Kenyon cells, followed by either or bulk or single cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalapram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other Drosophila circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L. Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Gajardo I, Guerra S, Campusano JM. Navigating Like a Fly: Drosophila melanogaster as a Model to Explore the Contribution of Serotonergic Neurotransmission to Spatial Navigation. Int J Mol Sci 2023; 24:ijms24054407. [PMID: 36901836 PMCID: PMC10002024 DOI: 10.3390/ijms24054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Serotonin is a monoamine that acts in vertebrates and invertebrates as a modulator promoting changes in the structure and activity of brain areas relevant to animal behavior, ranging from sensory perception to learning and memory. Whether serotonin contributes in Drosophila to human-like cognitive abilities, including spatial navigation, is an issue little studied. Like in vertebrates, the serotonergic system in Drosophila is heterogeneous, meaning that distinct serotonergic neurons/circuits innervate specific fly brain regions to modulate precise behaviors. Here we review the literature that supports that serotonergic pathways modify different aspects underlying the formation of navigational memories in Drosophila.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Neurociencia, Instituto Milenio de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Simón Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge M. Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: ; Tel.: +56-2-2354-2133
| |
Collapse
|
19
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
20
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
21
|
Bourouliti A, Skoulakis EMC. Anesthesia Resistant Memories in Drosophila, a Working Perspective. Int J Mol Sci 2022; 23:ijms23158527. [PMID: 35955662 PMCID: PMC9369046 DOI: 10.3390/ijms23158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Memories are lasting representations over time of associations between stimuli or events. In general, the relatively slow consolidation of memories requires protein synthesis with a known exception being the so-called Anesthesia Resistant Memory (ARM) in Drosophila. This protein synthesis-independent memory type survives amnestic shocks after a short, sensitive window post training, and can also emerge after repeated cycles of training in a negatively reinforced olfactory conditioning task, without rest between cycles (massed conditioning—MC). We discussed operational and molecular mechanisms that mediate ARM and differentiate it from protein synthesis-dependent long-term memory (LTM) in Drosophila. Based on the notion that ARM is unlikely to specifically characterize Drosophila, we examined protein synthesis and MC-elicited memories in other species and based on intraspecies shared molecular components and proposed potential relationships of ARM with established memory types in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Anna Bourouliti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16674 Vari, Greece;
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16674 Vari, Greece;
- Correspondence:
| |
Collapse
|
22
|
An Early Disturbance in Serotonergic Neurotransmission Contributes to the Onset of Parkinsonian Phenotypes in Drosophila melanogaster. Cells 2022; 11:cells11091544. [PMID: 35563850 PMCID: PMC9105628 DOI: 10.3390/cells11091544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by motor symptoms and dopaminergic cell loss. A pre-symptomatic phase characterized by non-motor symptoms precedes the onset of motor alterations. Two recent PET studies in human carriers of mutations associated with familial PD demonstrate an early serotonergic commitment—alteration in SERT binding—before any dopaminergic or motor dysfunction, that is, at putative PD pre-symptomatic stages. These findings support the hypothesis that early alterations in the serotonergic system could contribute to the progression of PD, an idea difficult to be tested in humans. Here, we study some components of the serotonergic system during the pre-symptomatic phase in a well-characterized Drosophila PD model, Pink1B9 mutant flies. We detected lower brain serotonin content in Pink1B9 flies, accompanied by reduced activity of SERT before the onset of motor dysfunctions. We also explored the consequences of a brief early manipulation of the serotonergic system in the development of motor symptoms later in aged animals. Feeding young Pink1B9 flies with fluoxetine, a SERT blocker, prevents the loss of dopaminergic neurons and ameliorates motor impairment observed in aged mutant flies. Surprisingly, the same pharmacological manipulation in young control flies results in aged animals exhibiting a PD-like phenotype. Our findings support that an early dysfunction in the serotonergic system precedes and contributes to the onset of the Parkinsonian phenotype in Drosophila.
Collapse
|
23
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
24
|
Sears JC, Broadie K. Temporally and Spatially Localized PKA Activity within Learning and Memory Circuitry Regulated by Network Feedback. eNeuro 2022; 9:ENEURO.0450-21.2022. [PMID: 35301221 PMCID: PMC8982635 DOI: 10.1523/eneuro.0450-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/β' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.
Collapse
Affiliation(s)
- James C Sears
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235
| |
Collapse
|
25
|
Feng KL, Weng JY, Chen CC, Abubaker MB, Lin HW, Charng CC, Lo CC, de Belle JS, Tully T, Lien CC, Chiang AS. Neuropeptide F inhibits dopamine neuron interference of long-term memory consolidation in Drosophila. iScience 2021; 24:103506. [PMID: 34934925 DOI: 10.1016/j.isci.2021.103506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long-term memory (LTM) formation requires consolidation processes to overcome interfering signals that erode memory formation. Olfactory memory in Drosophila involves convergent projection neuron (PN; odor) and dopaminergic neuron (DAN; reinforcement) input to the mushroom body (MB). How post-training DAN activity in the posterior lateral protocerebrum (PPL1) continues to regulate memory consolidation remains unknown. Here we address this question using targeted transgenes in behavior and electrophysiology experiments to show that (1) persistent post-training activity of PPL1-α2α'2 and PPL1-α3 DANs interferes with aversive LTM formation; (2) neuropeptide F (NPF) signaling blocks this interference in PPL1-α2α'2 and PPL1-α3 DANs after spaced training to enable LTM formation; and (3) training-induced NPF release and neurotransmission from two upstream dorsal-anterior-lateral (DAL2) neurons are required to form LTM. Thus, NPF signals from DAL2 neurons to specific PPL1 DANs disinhibit the memory circuit, ensuring that periodic events are remembered as consolidated LTM.
Collapse
Affiliation(s)
- Kuan-Lin Feng
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ju-Yun Weng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Chao Chen
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Hsuan-Wen Lin
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Che Charng
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Chuan Lo
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA.,School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.,MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Tim Tully
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience and Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.,Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,National Health Research Institutes, Zhunan 35053, Taiwan.,China Medical University, Taichung 40402, Taiwan.,Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093-0526, USA
| |
Collapse
|
26
|
Lee WP, Chiang MH, Chang LY, Shyu WH, Chiu TH, Fu TF, Wu T, Wu CL. Serotonin Signals Modulate Mushroom Body Output Neurons for Sustaining Water-Reward Long-Term Memory in Drosophila. Front Cell Dev Biol 2021; 9:755574. [PMID: 34858982 PMCID: PMC8631865 DOI: 10.3389/fcell.2021.755574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
Memory consolidation is a time-dependent process through which an unstable learned experience is transformed into a stable long-term memory; however, the circuit and molecular mechanisms underlying this process are poorly understood. The Drosophila mushroom body (MB) is a huge brain neuropil that plays a crucial role in olfactory memory. The MB neurons can be generally classified into three subsets: γ, αβ, and α′β′. Here, we report that water-reward long-term memory (wLTM) consolidation requires activity from α′β′-related mushroom body output neurons (MBONs) in a specific time window. wLTM consolidation requires neurotransmission in MBON-γ3β′1 during the 0–2 h period after training, and neurotransmission in MBON-α′2 is required during the 2–4 h period after training. Moreover, neurotransmission in MBON-α′1α′3 is required during the 0–4 h period after training. Intriguingly, blocking neurotransmission during consolidation or inhibiting serotonin biosynthesis in serotoninergic dorsal paired medial (DPM) neurons also disrupted the wLTM, suggesting that wLTM consolidation requires serotonin signals from DPM neurons. The GFP Reconstitution Across Synaptic Partners (GRASP) data showed the connectivity between DPM neurons and MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3, and RNAi-mediated silencing of serotonin receptors in MBON-γ3β′1, MBON-α′2, or MBON-α′1α′3 disrupted wLTM. Taken together, our results suggest that serotonin released from DPM neurons modulates neuronal activity in MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3 at specific time windows, which is critical for the consolidation of wLTM in Drosophila.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Neurology, New Taipei Municipal Tucheng Hospital, Tucheng, Taiwan.,Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Musso PY, Junca P, Gordon MD. A neural circuit linking two sugar sensors regulates satiety-dependent fructose drive in Drosophila. SCIENCE ADVANCES 2021; 7:eabj0186. [PMID: 34851668 PMCID: PMC8635442 DOI: 10.1126/sciadv.abj0186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In flies, neuronal sensors detect prandial changes in circulating fructose levels and either sustain or terminate feeding, depending on internal state. Here, we describe a three-part neural circuit that imparts satiety-dependent modulation of fructose sensing. We show that dorsal fan-shaped body neurons display oscillatory calcium activity when hemolymph glucose is high and that these oscillations require glutamatergic input from SLP-AB or “Janus” neurons projecting from the protocerebrum to the asymmetric body. Suppression of activity in this circuit, either by starvation or by genetic silencing, promotes specific drive for fructose ingestion. This is achieved through neuropeptidergic signaling by tachykinin, which is released from the fan-shaped body when glycemia is high. Tachykinin, in turn, signals to Gr43a-positive fructose sensors to modulate their response to fructose. Together, our results demonstrate how a three-layer neural circuit links the detection of two sugars to produce precise satiety-dependent control of feeding behavior.
Collapse
|
28
|
Noyes NC, Phan A, Davis RL. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron 2021; 109:3211-3227. [PMID: 34450024 PMCID: PMC8542634 DOI: 10.1016/j.neuron.2021.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
The brain has a remarkable but underappreciated capacity to limit memory formation and expression. The term "memory suppressor gene" was coined in 1998 as an attempt to explain emerging reports that some genes appeared to limit memory. At that time, only a handful of memory suppressor genes were known, and they were understood to work by limiting cAMP-dependent consolidation. In the intervening decades, almost 100 memory suppressor genes with diverse functions have been discovered that affect not only consolidation but also acquisition and forgetting. Here we highlight the surprising extent to which biological limits are placed on memory formation through reviewing the literature on memory suppressor genes. In this review, we present memory suppressors within the framework of their actions on different memory operations: acquisition, consolidation, and forgetting. This is followed by a discussion of the reasons why there may be a biological need to limit memory formation.
Collapse
Affiliation(s)
- Nathaniel C Noyes
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, 11355 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr Biol 2021; 31:4231-4245.e4. [PMID: 34358444 PMCID: PMC8538064 DOI: 10.1016/j.cub.2021.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 01/28/2023]
Abstract
Animals must express the appropriate behavior that meets their most pressing physiological needs and their environmental context. However, it is currently unclear how alternative behavioral options are evaluated and appropriate actions are prioritized. Here, we describe how fruit flies choose between feeding and courtship; two behaviors necessary for survival and reproduction. We show that sex- and food-deprived male flies prioritize feeding over courtship initiation, and manipulation of food quality or the animal's internal state fine-tunes this decision. We identify the tyramine signaling pathway as an essential mediator of this decision. Tyramine biosynthesis is regulated by the fly's nutritional state and acts as a satiety signal, favoring courtship over feeding. Tyramine inhibits a subset of feeding-promoting tyramine receptor (TyrR)-expressing neurons and activates P1 neurons, a known command center for courtship. Conversely, the perception of a nutritious food source activates TyrR neurons and inhibits P1 neurons. Therefore, TyrR and P1 neurons are oppositely modulated by starvation, via tyramine levels, and food availability. We propose that antagonistic co-regulation of neurons controlling alternative actions is key to prioritizing competing drives in a context- dependent manner.
Collapse
Affiliation(s)
| | - Saloni Rose
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | | - Shaleen Glasgow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jacob Moorse
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mike Winstanley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
30
|
Ibuchi K, Nagayama T. Opposing effects of dopamine on agonistic behaviour in crayfish. J Exp Biol 2021; 224:269155. [PMID: 34128529 DOI: 10.1242/jeb.242057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The effects of dopamine on the agonistic behaviour of crayfish were analysed. When dopamine concentrations of 1 μmol l-1 were injected into large crayfish, individuals were beaten by smaller opponents, despite their physical advantage. Injection of 10 μmol l-1 dopamine into small animals increased their rate of winning against larger opponents. Injection of a D1 receptor antagonist prohibited the onset of a 'loser' effect in subordinate animals, suggesting that the inhibitory effect of dopamine on larger animals is mediated by D1 receptors. Similarly, injection of a D2 receptor antagonist prohibited the onset of a 'winner' effect in dominant animals, suggesting that the facilitating effect of dopamine on small animals is mediated by D2 receptors. Since the inhibitory effect of 1 μmol l-1 dopamine was similar to that seen with 1 μmol l-1 octopamine and the facilitating effect of 10 μmol l-1 dopamine was similar to that of 1 μmol l-1 serotonin, functional interactions among dopamine, octopamine and serotonin were analyzed by co-injection of amines with their receptor antagonists in various combinations. The inhibitory effect of 1 μmol l-1 dopamine disappeared when administered with D1 receptor antagonist, but remained when combined with octopamine receptor antagonist. Octopamine effects disappeared when administered with either D1 receptor antagonist or octopamine receptor antagonist, suggesting that the dopamine system is downstream of octopamine. The facilitating effect of 10 μmol l-1 dopamine disappeared when combined with serotonin 5HT1 receptor antagonist or D2 receptor antagonist. Serotonin effects also disappeared when combined with D2 receptor antagonist, suggesting that dopamine and serotonin activate each other through parallel pathways.
Collapse
Affiliation(s)
- Kengo Ibuchi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
31
|
Muria A, Musso PY, Durrieu M, Portugal FR, Ronsin B, Gordon MD, Jeanson R, Isabel G. Social facilitation of long-lasting memory is mediated by CO 2 in Drosophila. Curr Biol 2021; 31:2065-2074.e5. [PMID: 33740428 DOI: 10.1016/j.cub.2021.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 01/05/2023]
Abstract
How social interactions influence cognition is a fundamental question, yet rarely addressed at the neurobiological level. It is well established that the presence of conspecifics affects learning and memory performance, but the neural basis of this process has only recently begun to be investigated. In the fruit fly Drosophila melanogaster, the presence of other flies improves retrieval of a long-lasting olfactory memory. Here, we demonstrate that this is a composite memory composed of two distinct elements. One is an individual memory that depends on outputs from the α'β' Kenyon cells (KCs) of the mushroom bodies (MBs), the memory center in the insect brain. The other is a group memory requiring output from the αβ KCs, a distinct sub-part of the MBs. We show that social facilitation of memory increases with group size and is triggered by CO2 released by group members. Among the different known neurons carrying CO2 information in the brain, we establish that the bilateral ventral projection neuron (biVPN), which projects onto the MBs, is necessary for social facilitation. Moreover, we demonstrate that CO2-evoked memory engages a serotoninergic pathway involving the dorsal-paired medial (DPM) neurons, revealing a new role for this pair of serotonergic neurons. Overall, we identified both the sensorial cue and the neural circuit (biVPN>αβ>DPM>αβ) governing social facilitation of memory in flies. This study provides demonstration that being in a group recruits the expression of a cryptic memory and that variations in CO2 concentration can affect cognitive processes in insects.
Collapse
Affiliation(s)
- Aurélie Muria
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Pierre-Yves Musso
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France; Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthias Durrieu
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Felipe Ramon Portugal
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, IRD, 118 route de Narbonne, Bat 4R1, 31062 Toulouse Cedex 9, France; Ecole Nationale Supérieure Formation de l'Enseignement Agricole, Castanet-Tolosan, France
| | - Brice Ronsin
- CBI, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
32
|
Felsenberg J. Changing memories on the fly: the neural circuits of memory re-evaluation in Drosophila melanogaster. Curr Opin Neurobiol 2020; 67:190-198. [PMID: 33373859 DOI: 10.1016/j.conb.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Associative learning leads to modifications in neural networks to assign valence to sensory cues. These changes not only allow the expression of learned behavior but also modulate subsequent learning events. In the brain of the adult fruit fly, Drosophila melanogaster, olfactory memories are established as dopamine-driven plasticity in the output of a highly recurrent network, the mushroom body. Recent findings have highlighted how these changes in the network can steer the strengthening, weakening and formation of parallel memories when flies are exposed to subsequent training trials, conflicting situations or the reversal of contingencies. Together, these processes provide an initial understanding of how learned information can be used to guide the re-evaluation of memories.
Collapse
|
33
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Serotonin receptor 5-HT7 in Drosophila mushroom body neurons mediates larval appetitive olfactory learning. Sci Rep 2020; 10:21267. [PMID: 33277559 PMCID: PMC7718245 DOI: 10.1038/s41598-020-77910-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
Serotonin (5-HT) and dopamine are critical neuromodulators known to regulate a range of behaviors in invertebrates and mammals, such as learning and memory. Effects of both serotonin and dopamine are mediated largely through their downstream G-protein coupled receptors through cAMP-PKA signaling. While the role of dopamine in olfactory learning in Drosophila is well described, the function of serotonin and its downstream receptors on Drosophila olfactory learning remain largely unexplored. In this study we show that the output of serotonergic neurons, possibly through points of synaptic contacts on the mushroom body (MB), is essential for training during olfactory associative learning in Drosophila larvae. Additionally, we demonstrate that the regulation of olfactory associative learning by serotonin is mediated by its downstream receptor (d5-HT7) in a cAMP-dependent manner. We show that d5-HT7 expression specifically in the MB, an anatomical structure essential for olfactory learning in Drosophila, is critical for olfactory associative learning. Importantly our work shows that spatio-temporal restriction of d5-HT7 expression to the MB is sufficient to rescue olfactory learning deficits in a d5-HT7 null larvae. In summary, our results establish a critical, and previously unknown, role of d5-HT7 in olfactory learning.
Collapse
|
35
|
Hu SW, Yang YT, Sun Y, Zhan YP, Zhu Y. Serotonin Signals Overcome Loser Mentality in Drosophila. iScience 2020; 23:101651. [PMID: 33117967 PMCID: PMC7581928 DOI: 10.1016/j.isci.2020.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/03/2022] Open
Abstract
Traumatic experiences generate stressful neurological effects in the exposed persons and animals. Previous studies have demonstrated that in many species, including Drosophila, the defeated animal has a higher probability of losing subsequent fights. However, the neural basis of this “loser effect” is largely unknown. We herein report that elevated serotonin (5-HT) signaling helps a loser to overcome suppressive neurological states. Coerced activation of 5-HT neurons increases aggression in males and promotes losers to both vigorously re-engage in fights and even defeat the previous winners and regain mating motivation. P1 neurons act upstream and 5-HT1B neurons in the ellipsoid body act downstream of 5-HT neurons to arouse losers. Our results demonstrate an ancient neural mechanism of regulating depressive behavioral states after distressing events. Activating a small subset of serotonin neurons promotes losers to fight Serotonin is necessary and sufficient for modulating aggression in losers The neural circuit for motivating losers includes P1, 5-HT, and 5-HT1B neurons Elevating 5-HT signaling overcomes the depressive behavioral state in losers
Collapse
Affiliation(s)
- Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Peng Zhan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Modi MN, Shuai Y, Turner GC. The Drosophila Mushroom Body: From Architecture to Algorithm in a Learning Circuit. Annu Rev Neurosci 2020; 43:465-484. [PMID: 32283995 DOI: 10.1146/annurev-neuro-080317-0621333] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Drosophila brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for Drosophila learning and revealed the following key operations: a) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; b) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; c) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and d) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.
Collapse
Affiliation(s)
- Mehrab N Modi
- Janelia Research Campus, Ashburn, Virginia 20147, USA;
| | - Yichun Shuai
- Janelia Research Campus, Ashburn, Virginia 20147, USA;
| | | |
Collapse
|
37
|
Dissel S, Morgan E, Duong V, Chan D, van Swinderen B, Shaw P, Zars T. Sleep restores place learning to the adenylyl cyclase mutant rutabaga. J Neurogenet 2020; 34:83-91. [PMID: 31997683 PMCID: PMC7250152 DOI: 10.1080/01677063.2020.1720674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 01/29/2023]
Abstract
Sleep plays an important role in regulating plasticity. In Drosophila, the relationship between sleep and learning and memory has primarily focused on mushroom body dependent operant-learning assays such as aversive phototaxic suppression and courtship conditioning. In this study, sleep was increased in the classic mutant rutabaga (rut2080) and dunce (dnc1) by feeding them the GABA-A agonist gaboxadol (Gab). Performance was evaluated in each mutant in response to social enrichment and place learning, tasks that do not require the mushroom body. Gab-induced sleep did not restore behavioral plasticity to either rut2080 or dnc1 mutants following social enrichment. However, increased sleep restored place learning to rut2080 mutants. These data extend the positive effects of enhanced sleep to place learning and highlight the utility of Gab for elucidating the beneficial effects of sleep on brain functioning.
Collapse
Affiliation(s)
- Stephane Dissel
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO 64110
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Ellen Morgan
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Vincent Duong
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Dorothy Chan
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Bruno van Swinderen
- The Queensland Brain Institute, University of Queensland, Brisbane Qld 4072 Australia
| | - Paul Shaw
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
38
|
Boto T, Stahl A, Tomchik SM. Cellular and circuit mechanisms of olfactory associative learning in Drosophila. J Neurogenet 2020; 34:36-46. [PMID: 32043414 DOI: 10.1080/01677063.2020.1715971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly Drosophila melanogaster is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in Drosophila, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.
Collapse
Affiliation(s)
- Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Aaron Stahl
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
39
|
Abstract
The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
40
|
Ras acts as a molecular switch between two forms of consolidated memory in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2133-2139. [PMID: 31932418 DOI: 10.1073/pnas.1819925117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long-lasting, consolidated memories require not only positive biological processes that facilitate long-term memories (LTM) but also the suppression of inhibitory processes that prevent them. The mushroom body neurons (MBn) in Drosophila melanogaster store protein synthesis-dependent LTM (PSD-LTM) as well as protein synthesis-independent, anesthesia-resistant memory (ARM). The formation of ARM inhibits PSD-LTM but the underlying molecular processes that mediate this interaction remain unknown. Here, we demonstrate that the Ras→Raf→rho kinase (ROCK) pathway in MBn suppresses ARM consolidation, allowing the formation of PSD-LTM. Our initial results revealed that the effects of Ras on memory are due to postacquisition processes. Ras knockdown enhanced memory expression but had no effect on acquisition. Additionally, increasing Ras activity optogenetically after, but not before, acquisition impaired memory performance. The elevated memory produced by Ras knockdown is a result of increased ARM. While Ras knockdown enhanced the consolidation of ARM, it eliminated PSD-LTM. We found that these effects are mediated by the downstream kinase Raf. Similar to Ras, knockdown of Raf enhanced ARM consolidation and impaired PSD-LTM. Surprisingly, knockdown of the canonical downstream extracellular signal-regulated kinase did not reproduce the phenotypes observed with Ras and Raf knockdown. Rather, Ras/Raf inhibition of ROCK was found to be responsible for suppressing ARM. Constitutively active ROCK enhanced ARM and impaired PSD-LTM, while decreasing ROCK activity rescued the enhanced ARM produced by Ras knockdown. We conclude that MBn Ras/Raf inhibition of ROCK suppresses the consolidation of ARM, which permits the formation of PSD-LTM.
Collapse
|
41
|
Affiliation(s)
- Nadine Ehmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
42
|
Amin H, Lin AC. Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:9-17. [PMID: 31280185 DOI: 10.1016/j.cois.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Olfaction allows animals to adapt their behavior in response to different chemical cues in their environment. How does the brain efficiently discriminate different odors to drive appropriate behavior, and how does it flexibly assign value to odors to adjust behavior according to experience? This review traces neuronal mechanisms underlying these processes in adult Drosophila melanogaster from olfactory receptors to higher brain centers. We highlight neural circuit principles such as lateral inhibition, segregation and integration of olfactory channels, temporal accumulation of sensory evidence, and compartmentalized synaptic plasticity underlying associative memory.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
43
|
Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo TT, Sharp B, Christoforou C, Hu A, Lemire AL, Tillberg P, Hirsh J, Litwin-Kumar A, Rubin GM. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife 2019; 8:49257. [PMID: 31724947 PMCID: PMC6948953 DOI: 10.7554/elife.49257] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO's effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert P Ray
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Xi Long
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karol Cichewicz
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Teri-Tb Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brandi Sharp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Amy Hu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Paul Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
44
|
Scheunemann L, Lampin-Saint-Amaux A, Schor J, Preat T. A sperm peptide enhances long-term memory in female Drosophila. SCIENCE ADVANCES 2019; 5:eaax3432. [PMID: 31799390 PMCID: PMC6867886 DOI: 10.1126/sciadv.aax3432] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Can mating influence cognitive functions such as learning and memory in a permanent way? We have addressed this question using a combined behavioral and in vivo imaging approach, finding that aversive long-term memory performance strongly increases in Drosophila females in response to sperm transfer following mating. A peptide in the male sperm, the sex peptide, is known to cause marked changes in female reproductive behavior, as well as other behaviors such as dietary preference. Here, we demonstrate that this sex peptide enhances memory by acting on a single pair of serotonergic brain neurons, in which activation of the sex peptide receptor stimulates the cyclic adenosine monophosphate/protein kinase A pathway. We thus reveal a strong effect of mating on memory via the neuromodulatory action of a sperm peptide on the female brain.
Collapse
|
45
|
Obvious anxiogenic-like effects of subchronic copper intoxication in rats, outcomes on spatial learning and memory and neuromodulatory potential of curcumin. J Chem Neuroanat 2019; 96:86-93. [DOI: 10.1016/j.jchemneu.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
|
46
|
Intrahippocampal administration of 5-HT6 receptor drugs on memory consolidation and amnesia protocols. Behav Brain Res 2019; 359:378-385. [DOI: 10.1016/j.bbr.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
|
47
|
Big Lessons from Tiny Flies: Drosophila melanogaster as a Model to Explore Dysfunction of Dopaminergic and Serotonergic Neurotransmitter Systems. Int J Mol Sci 2018; 19:ijms19061788. [PMID: 29914172 PMCID: PMC6032372 DOI: 10.3390/ijms19061788] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.
Collapse
|