1
|
Brown AR, Fox GA, Kaplow IM, Lawler AJ, Phan BN, Gadey L, Wirthlin ME, Ramamurthy E, May GE, Chen Z, Su Q, McManus CJ, van de Weerd R, Pfenning AR. An in vivo systemic massively parallel platform for deciphering animal tissue-specific regulatory function. Front Genet 2025; 16:1533900. [PMID: 40270544 PMCID: PMC12016043 DOI: 10.3389/fgene.2025.1533900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction: Transcriptional regulation is an important process wherein non-protein coding enhancer sequences play a key role in determining cell type identity and phenotypic diversity. In neural tissue, these gene regulatory processes are crucial for coordinating a plethora of interconnected and regionally specialized cell types, ensuring their synchronized activity in generating behavior. Recognizing the intricate interplay of gene regulatory processes in the brain is imperative, as mounting evidence links neurodevelopment and neurological disorders to non-coding genome regions. While genome-wide association studies are swiftly identifying non-coding human disease-associated loci, decoding regulatory mechanisms is challenging due to causal variant ambiguity and their specific tissue impacts. Methods: Massively parallel reporter assays (MPRAs) are widely used in cell culture to study the non-coding enhancer regions, linking genome sequence differences to tissue-specific regulatory function. However, widespread use in animals encounters significant challenges, including insufficient viral library delivery and library quantification, irregular viral transduction rates, and injection site inflammation disrupting gene expression. Here, we introduce a systemic MPRA (sysMPRA) to address these challenges through systemic intravenous AAV viral delivery. Results: We demonstrate successful transduction of the MPRA library into diverse mouse tissues, efficiently identifying tissue specificity in candidate enhancers and aligning well with predictions from machine learning models. We highlight that sysMPRA effectively uncovers regulatory effects stemming from the disruption of MEF2C transcription factor binding sites, single-nucleotide polymorphisms, and the consequences of genetic variations associated with late-onset Alzheimer's disease. Conclusion: SysMPRA is an effective library delivering method that simultaneously determines the transcriptional functions of hundreds of enhancers in vivo across multiple tissues.
Collapse
Affiliation(s)
- Ashley R. Brown
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Grant A. Fox
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Irene M. Kaplow
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - BaDoi N. Phan
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lahari Gadey
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Morgan E. Wirthlin
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Easwaran Ramamurthy
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gemma E. May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Qiao Su
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Robert van de Weerd
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Andreas R. Pfenning
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Elie JE, Muroy SE, Genzel D, Na T, Beyer LA, Swiderski DL, Raphael Y, Yartsev MM. Role of auditory feedback for vocal production learning in the Egyptian fruit bat. Curr Biol 2024; 34:4062-4070.e7. [PMID: 39255755 PMCID: PMC11493346 DOI: 10.1016/j.cub.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024]
Abstract
Some species have evolved the ability to use the sense of hearing to modify existing vocalizations, or even create new ones, which enlarges their repertoires and results in complex communication systems.1 This ability corresponds to various forms of vocal production learning that are all possessed by humans and independently displayed by distantly related vertebrates.1,2,3,4,5,6,7 Among mammals, a few species, including the Egyptian fruit bat,8,9,10 would possess such vocal production learning abilities.7 Yet the necessity of an intact auditory system for the development of the Egyptian fruit bat typical vocal repertoire has not been tested. Furthermore, a systematic causal examination of learned and innate aspects of the entire repertoire has never been performed in any vocal learner. Here we addressed these gaps by eliminating pups' sense of hearing at birth and assessing its effects on vocal production in adulthood. The deafening treatment enabled us to both causally test these bats' vocal learning ability and discern learned from innate aspects of their vocalizations. Leveraging wireless individual audio recordings from freely interacting adults, we show that a subset of the Egyptian fruit bat vocal repertoire necessitates auditory feedback. Intriguingly, these affected vocalizations belong to different acoustic groups in the vocal repertoire of males and females. These findings open the possibilities for targeted studies of the mammalian neural circuits that enable sexually dimorphic forms of vocal learning.
Collapse
Affiliation(s)
- Julie E Elie
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Sandra E Muroy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daria Genzel
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tong Na
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lisa A Beyer
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | - Michael M Yartsev
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Moran IG, Loo YY, Louca S, Young NBA, Whibley A, Withers SJ, Salloum PM, Hall ML, Stanley MC, Cain KE. Vocal convergence and social proximity shape the calls of the most basal Passeriformes, New Zealand Wrens. Commun Biol 2024; 7:575. [PMID: 38750083 PMCID: PMC11096322 DOI: 10.1038/s42003-024-06253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Despite extensive research on avian vocal learning, we still lack a general understanding of how and when this ability evolved in birds. As the closest living relatives of the earliest Passeriformes, the New Zealand wrens (Acanthisitti) hold a key phylogenetic position for furthering our understanding of the evolution of vocal learning because they share a common ancestor with two vocal learners: oscines and parrots. However, the vocal learning abilities of New Zealand wrens remain unexplored. Here, we test for the presence of prerequisite behaviors for vocal learning in one of the two extant species of New Zealand wrens, the rifleman (Acanthisitta chloris). We detect the presence of unique individual vocal signatures and show how these signatures are shaped by social proximity, as demonstrated by group vocal signatures and strong acoustic similarities among distantly related individuals in close social proximity. Further, we reveal that rifleman calls share similar phenotypic variance ratios to those previously reported in the learned vocalizations of the zebra finch, Taeniopygia guttata. Together these findings provide strong evidence that riflemen vocally converge, and though the mechanism still remains to be determined, they may also suggest that this vocal convergence is the result of rudimentary vocal learning abilities.
Collapse
Affiliation(s)
- Ines G Moran
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand.
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand.
| | - Yen Yi Loo
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, 97403-1210, OR, USA
| | - Nick B A Young
- Centre for eResearch, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Sarah J Withers
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, Dunedin, 9016, Aotearoa New Zealand
| | - Michelle L Hall
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Bush Heritage Australia, Melbourne, VIC, 3000, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Margaret C Stanley
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Kristal E Cain
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| |
Collapse
|
4
|
Wagner B, Toro JM, Mayayo F, Hoeschele M. Do rats ( Rattus norvegicus) perceive octave equivalence, a critical human cross-cultural aspect of pitch perception? ROYAL SOCIETY OPEN SCIENCE 2024; 11:221181. [PMID: 39076801 PMCID: PMC11286135 DOI: 10.1098/rsos.221181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/23/2022] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
Octave equivalence describes the perception that two notes separated by a doubling in frequency have a similar quality. In humans, octave equivalence is important to both music and language learning and is found cross-culturally. Cross-species studies comparing human and non-human animals can help illuminate the necessary pre-conditions to developing octave equivalence. Here, we tested whether rats (Rattus norvegicus) perceive octave equivalence using a standardized cross-species paradigm. This allowed us to disentangle concurring hypotheses regarding the evolutionary roots of this phenomenon. One hypothesis is that octave equivalence is directly connected to vocal learning, but this hypothesis is only partially supported by data. According to another hypothesis, the harmonic structure of mammalian vocalizations may be more important. If rats perceive octave equivalence, this would support the importance of vocal harmonic structure. If rats do not perceive octave equivalence, this would suggest that octave equivalence evolved independently in several mammalian clades due to a more complex interplay of different factors such as-but not exclusively-the ability to vocally learn. Evidence from our study suggests that rats do perceive octave equivalence, thereby suggesting that the harmonic vocal structure found in mammals may be a key pre-requisite for octave equivalence. Stage 1 approved protocol: the study reported here was originally accepted as a Registered Report and the study design was approved in Stage 1. We hereby confirm that the completed experiment(s) have been executed and analysed in the manner originally approved with any unforeseen changes in those approved methods and analyses clearly noted. The approved Stage 1 protocol can be found at: https://osf.io/gvf7c/?view_only=76dc1840f31c4f9ab59eb93cbadb98b7.
Collapse
Affiliation(s)
- Bernhard Wagner
- Austrian Academy of Sciences, Acoustics Research Institute, Vienna1040, Austria
| | - Juan Manuel Toro
- Passeig de Lluís Companys, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona08010, Spain
- C. Ramon Trias Fargas, Universitat Pompeu Fabra, Barcelona08005, Spain
| | - Ferran Mayayo
- C. Ramon Trias Fargas, Universitat Pompeu Fabra, Barcelona08005, Spain
| | - Marisa Hoeschele
- Austrian Academy of Sciences, Acoustics Research Institute, Vienna1040, Austria
| |
Collapse
|
5
|
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science 2024; 383:eabn3263. [PMID: 38422184 PMCID: PMC11313673 DOI: 10.1126/science.abn3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Collapse
Affiliation(s)
- Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Amanda Kowalczyk
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Ruby Redlich
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Varvara A. Shvareva
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ashley Rakuljic
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Maria B. Ji
- Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ninad S. Bhat
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Alyssa J. Lawler
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Andrew Z. Wang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Siddharth Annaldasula
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tianyu Lu
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Byung Kook Lim
- Neurobiology section, Division of Biological Science, University of California, San Diego; La Jolla, CA 92093, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Kleindorfer S, Brouwer L, Hauber ME, Teunissen N, Peters A, Louter M, Webster MS, Katsis AC, Sulloway FJ, Common LK, Austin VI, Colombelli-Négrel D. Nestling Begging Calls Resemble Maternal Vocal Signatures When Mothers Call Slowly to Embryos. Am Nat 2024; 203:267-283. [PMID: 38306283 DOI: 10.1086/728105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractVocal production learning (the capacity to learn to produce vocalizations) is a multidimensional trait that involves different learning mechanisms during different temporal and socioecological contexts. Key outstanding questions are whether vocal production learning begins during the embryonic stage and whether mothers play an active role in this through pupil-directed vocalization behaviors. We examined variation in vocal copy similarity (an indicator of learning) in eight species from the songbird family Maluridae, using comparative and experimental approaches. We found that (1) incubating females from all species vocalized inside the nest and produced call types including a signature "B element" that was structurally similar to their nestlings' begging call; (2) in a prenatal playback experiment using superb fairy wrens (Malurus cyaneus), embryos showed a stronger heart rate response to playbacks of the B element than to another call element (A); and (3) mothers that produced slower calls had offspring with greater similarity between their begging call and the mother's B element vocalization. We conclude that malurid mothers display behaviors concordant with pupil-directed vocalizations and may actively influence their offspring's early life through sound learning shaped by maternal call tempo.
Collapse
|
7
|
Elie JE, Muroy SE, Genzel D, Na T, Beyer LA, Swiderski DL, Raphael Y, Yartsev MM. Role of auditory feedback for vocal production learning in the Egyptian fruit-bat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568126. [PMID: 38045408 PMCID: PMC10690156 DOI: 10.1101/2023.11.21.568126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Some species have evolved the ability to use the sense of hearing to modify existing vocalizations, or even create new ones. This ability corresponds to various forms of vocal production learning that are all possessed by humans, and independently displayed by distantly related vertebrates. Among mammals, a few species, including the Egyptian fruit-bat, would possess such vocal production learning abilities. Yet the necessity of an intact auditory system for the development of the Egyptian fruit-bat typical vocal repertoire has not been tested. Furthermore, a systematic causal examination of learned and innate aspects of the entire repertoire has never been performed in any vocal learner. Here we addressed these gaps by eliminating pups' sense of hearing at birth and assessing its effects on vocal production in adulthood. The deafening treatment enabled us to both causally test these bats vocal learning ability and discern learned from innate aspects of their vocalizations. Leveraging wireless individual audio recordings from freely interacting adults, we show that a subset of the Egyptian fruit-bat vocal repertoire necessitates auditory feedback. Intriguingly, these affected vocalizations belong to different acoustic groups in the vocal repertoire of males and females. These findings open the possibilities for targeted studies of the mammalian neural circuits that enable sexually dimorphic forms of vocal learning.
Collapse
|
8
|
Audet JN, Couture M, Jarvis ED. Songbird species that display more-complex vocal learning are better problem-solvers and have larger brains. Science 2023; 381:1170-1175. [PMID: 37708288 DOI: 10.1126/science.adh3428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Complex vocal learning, a critical component of human spoken language, has been assumed to be associated with more-advanced cognitive abilities. Tests of this hypothesis between individuals within a species have been inconclusive and have not been done across species. In this work, we measured an array of cognitive skills-namely, problem-solving, associative and reversal learning, and self-control-across 214 individuals of 23 bird species, including 19 wild-caught songbird species, two domesticated songbird species, and two wild-caught vocal nonlearning species. We found that the greater the vocal learning abilities of a species, the better their problem-solving skills and the relatively larger their brains. These conclusions held when controlling for noncognitive variables and phylogeny. Our results support a hypothesis of shared genetic and cognitive mechanisms between vocal learning, problem-solving, and bigger brains in songbirds.
Collapse
Affiliation(s)
- Jean-Nicolas Audet
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Mélanie Couture
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Rouse AA, Patel AD, Wainapel S, Kao MH. Sex differences in vocal learning ability in songbirds are linked with differences in flexible rhythm pattern perception. Anim Behav 2023; 203:193-206. [PMID: 37842009 PMCID: PMC10569135 DOI: 10.1016/j.anbehav.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Humans readily recognize familiar rhythmic patterns, such as isochrony (equal timing between events) across a wide range of rates. This reflects a facility with perceiving the relative timing of events, not just absolute interval durations. Several lines of evidence suggest this ability is supported by precise temporal predictions arising from forebrain auditory-motor interactions. We have shown previously that male zebra finches, Taeniopygia guttata, which possess specialized auditory-motor networks and communicate with rhythmically patterned sequences, share our ability to flexibly recognize isochrony across rates. To test the hypothesis that flexible rhythm pattern perception is linked to vocal learning, we ask whether female zebra finches, which do not learn to sing, can also recognize global temporal patterns. We find that females can flexibly recognize isochrony across a wide range of rates but perform slightly worse than males on average. These findings are consistent with recent work showing that while females have reduced forebrain song regions, the overall network connectivity of vocal premotor regions is similar to males and may support predictions of upcoming events. Comparative studies of male and female songbirds thus offer an opportunity to study how individual differences in auditory-motor connectivity influence perception of relative timing, a hallmark of human music perception.
Collapse
Affiliation(s)
- Andrew A. Rouse
- Department of Psychology, Tufts University, Medford, MA, U.S.A
| | - Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, U.S.A
- Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | | | - Mimi H. Kao
- Department of Biology, Tufts University, Medford, MA, U.S.A
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
10
|
Wagner B, Šlipogor V, Oh J, Varga M, Hoeschele M. A comparison between common marmosets (Callithrix jacchus) and human infants sheds light on traits proposed to be at the root of human octave equivalence. Dev Sci 2023; 26:e13395. [PMID: 37101383 DOI: 10.1111/desc.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
Two notes separated by a doubling in frequency sound similar to humans. This "octave equivalence" is critical to perception and production of music and speech and occurs early in human development. Because it also occurs cross-culturally, a biological basis of octave equivalence has been hypothesized. Members of our team previousy suggested four human traits are at the root of this phenomenon: (1) vocal learning, (2) clear octave information in vocal harmonics, (3) differing vocal ranges, and (4) vocalizing together. Using cross-species studies, we can test how relevant these respective traits are, while controlling for enculturation effects and addressing questions of phylogeny. Common marmosets possess forms of three of the four traits, lacking differing vocal ranges. We tested 11 common marmosets by adapting an established head-turning paradigm, creating a parallel test to an important infant study. Unlike human infants, marmosets responded similarly to tones shifted by an octave or other intervals. Because previous studies with the same head-turning paradigm produced differential results to discernable acoustic stimuli in common marmosets, our results suggest that marmosets do not perceive octave equivalence. Our work suggests differing vocal ranges between adults and children and men and women and the way they are used in singing together may be critical to the development of octave equivalence. RESEARCH HIGHLIGHTS: A direct comparison of octave equivalence tests with common marmosets and human infants Marmosets show no octave equivalence Results emphasize the importance of differing vocal ranges between adults and infants.
Collapse
Affiliation(s)
- Bernhard Wagner
- Acoustics Research Institute, Austrian Academy of the Sciences, Vienna, Austria
| | - Vedrana Šlipogor
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Jinook Oh
- Cremer Group, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marion Varga
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Marisa Hoeschele
- Acoustics Research Institute, Austrian Academy of the Sciences, Vienna, Austria
| |
Collapse
|
11
|
Nevue AA, Mello CV, Portfors CV. Bats possess the anatomical substrate for a laryngeal motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546619. [PMID: 37425685 PMCID: PMC10327025 DOI: 10.1101/2023.06.26.546619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cortical neurons that make direct connections to motor neurons in the brainstem and spinal cord are specialized for fine motor control and learning [1, 2]. Imitative vocal learning, the basis for human speech, requires the precise control of the larynx muscles [3]. While much knowledge on vocal learning systems has been gained from studying songbirds [4], an accessible laboratory model for mammalian vocal learning is highly desirable. Evidence indicative of complex vocal repertoires and dialects suggests that bats are vocal learners [5, 6], however the circuitry that underlies vocal control and learning in bats is largely unknown. A key feature of vocal learning animals is a direct cortical projection to the brainstem motor neurons that innervate the vocal organ [7]. A recent study [8] described a direct connection from the primary motor cortex to medullary nucleus ambiguus in the Egyptian fruit bat (Rousettus aegyptiacus). Here we show that a distantly related bat, Seba's short-tailed bat (Carollia perspicillata) also possesses a direct projection from the primary motor cortex to nucleus ambiguus. Our results, in combination with Wirthlin et al. [8], suggest that multiple bat lineages possess the anatomical substrate for cortical control of vocal output. We propose that bats would be an informative mammalian model for vocal learning studies to better understand the genetics and circuitry involved in human vocal communication.
Collapse
Affiliation(s)
- Alexander A Nevue
- College of Arts and Sciences, Washington State University, Vancouver, WA, 98686
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | | |
Collapse
|
12
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Salmi R, Szczupider M, Carrigan J. A novel attention-getting vocalization in zoo-housed western gorillas. PLoS One 2022; 17:e0271871. [PMID: 35947550 PMCID: PMC9365142 DOI: 10.1371/journal.pone.0271871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
As a critical aspect of language, vocal learning is extremely rare in animals, having only been described in a few distantly related species. New evidence, however, extends vocal learning/innovation to the primate order, with zoo-housed chimpanzees and orangutans producing novel vocal signals to attract the attention of familiar human caregivers. If the ability to produce novel vocalizations as a means of navigating evolutionarily novel circumstances spans the Hominidae family, then we can expect to find evidence for it in the family’s third genus, Gorilla. To explore this possibility, we conduct an experiment with eight gorillas from Zoo Atlanta to examine whether they use species-atypical vocalizations to get the attention of humans across three different conditions: just a human, just food, or a human holding food. Additionally, we survey gorilla keepers from other AZA-member zoos to compile a list of common attention-getting signals used by the gorillas in their care. Our experiment results indicated that Zoo Atlanta gorillas vocalized most often during the human-food condition, with the most frequently used vocal signal being a species-atypical sound somewhere between a sneeze and a cough (n = 28). This previously undescribed sound is acoustically different from other calls commonly produced during feeding (i.e., single grunts and food-associated calls). Our survey and analyses of recordings from other zoos confirmed that this novel attention-getting sound is not unique to Zoo Atlanta, although further work should be done to better determine the extent and patterns of transmission and/or potential independent innovation of this sound across captive gorilla populations. These findings represent one of the few pieces of evidence of spontaneous novel vocal production in non-enculturated individuals of this species, supporting the inclusion of great apes as moderate vocal learners and perhaps demonstrating an evolutionary function to a flexible vocal repertoire.
Collapse
Affiliation(s)
- Roberta Salmi
- Department of Anthropology, University of Georgia, Athens, GA, United States of America
- * E-mail:
| | - Monica Szczupider
- Department of Anthropology, University of Georgia, Athens, GA, United States of America
- Intergrative Conservation Graduate Program, University of Georgia, Athens, GA, United States of America
| | - Jodi Carrigan
- Zoo Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Rodríguez-Saltos CA, Duque FG, Clarke JA. Precise and nonscalar timing of intervals in a bird vocalization. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Rose EM, Haakenson CM, Ball GF. Sex differences in seasonal brain plasticity and the neuroendocrine regulation of vocal behavior in songbirds. Horm Behav 2022; 142:105160. [PMID: 35366412 DOI: 10.1016/j.yhbeh.2022.105160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Birdsong is controlled in part by a discrete network of interconnected brain nuclei regulated in turn by steroid hormones and environmental stimuli. This complex interaction results in neural changes that occur seasonally as the environment varies (e.g., photoperiod, food/water availability, etc.). Variation in environment, vocal behavior, and neuroendocrine control has been primarily studied in male songbirds in both laboratory studies of captive birds and field studies of wild caught birds. The bias toward studying seasonality in the neuroendocrine regulation of song in male birds comes from a historic focus on sexually selected male behaviors. In fact, given that male song is often loud and accompanied by somewhat extravagant courtship behaviors, female song has long been overlooked. To compound this bias, the primary model songbird species for studies in the lab, zebra finches (Taeniopygia guttata) and canaries (Serinus canaria), exhibit little or no female song. Therefore, understanding the degree of variation and neuroendocrine control of seasonality in female songbirds is a major gap in our knowledge. In this review, we discuss the importance of studying sex differences in seasonal plasticity and the song control system. Specifically, we discuss sex differences in 1) the neuroanatomy of the song control system, 2) the distribution of receptors for androgens and estrogens and 3) the seasonal neuroplasticity of the hypothalamo-pituitary-gonadal axis as well as in the neural and cellular mechanisms mediating song system changes. We also discuss how these neuroendocrine mechanisms drive sex differences in seasonal behavior. Finally, we highlight specific gaps in our knowledge and suggest experiments critical for filling these gaps.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
16
|
Vocal Learning and Behaviors in Birds and Human Bilinguals: Parallels, Divergences and Directions for Research. LANGUAGES 2021. [DOI: 10.3390/languages7010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Comparisons between the communication systems of humans and animals are instrumental in contextualizing speech and language into an evolutionary and biological framework and for illuminating mechanisms of human communication. As a complement to previous work that compares developmental vocal learning and use among humans and songbirds, in this article we highlight phenomena associated with vocal learning subsequent to the development of primary vocalizations (i.e., the primary language (L1) in humans and the primary song (S1) in songbirds). By framing avian “second-song” (S2) learning and use within the human second-language (L2) context, we lay the groundwork for a scientifically-rich dialogue between disciplines. We begin by summarizing basic birdsong research, focusing on how songs are learned and on constraints on learning. We then consider commonalities in vocal learning across humans and birds, in particular the timing and neural mechanisms of learning, variability of input, and variability of outcomes. For S2 and L2 learning outcomes, we address the respective roles of age, entrenchment, and social interactions. We proceed to orient current and future birdsong inquiry around foundational features of human bilingualism: L1 effects on the L2, L1 attrition, and L1<–>L2 switching. Throughout, we highlight characteristics that are shared across species as well as the need for caution in interpreting birdsong research. Thus, from multiple instructive perspectives, our interdisciplinary dialogue sheds light on biological and experiential principles of L2 acquisition that are informed by birdsong research, and leverages well-studied characteristics of bilingualism in order to clarify, contextualize, and further explore S2 learning and use in songbirds.
Collapse
|
17
|
Abstract
Birds are our best models to understand vocal learning – a vocal production ability guided by auditory feedback, which includes human language. Among all vocal learners, songbirds have the most diverse life histories, and some aspects of their vocal learning ability are well-known, such as the neural substrates and vocal control centers, through vocal development studies. Currently, species are classified as either vocal learners or non-learners, and a key difference between the two is the development period, extended in learners, but short in non-learners. But this clear dichotomy has been challenged by the vocal learning continuum hypothesis. One way to address this challenge is to examine both learners and canonical non-learners and determine whether their vocal development is dichotomous or falls along a continuum. However, when we examined the existing empirical data we found that surprisingly few species have their vocal development periods documented. Furthermore, we identified multiple biases within previous vocal development studies in birds, including an extremely narrow focus on (1) a few model species, (2) oscines, (3) males, and (4) songs. Consequently, these biases may have led to an incomplete and possibly erroneous conclusions regarding the nature of the relationships between vocal development patterns and vocal learning ability. Diversifying vocal development studies to include a broader range of taxa is urgently needed to advance the field of vocal learning and examine how vocal development patterns might inform our understanding of vocal learning.
Collapse
|
18
|
Carouso-Peck S, Goldstein MH. Evolving the capacity for socially guided vocal learning in songbirds: a preliminary study. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200246. [PMID: 34482720 DOI: 10.1098/rstb.2020.0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Socially guided vocal learning, the ability to use contingent reactions from social partners to guide immature vocalizations to more mature forms, is thought to be a rare ability known to be used only by humans, marmosets and two unrelated songbird species (brown-headed cowbirds and zebra finches). However, this learning strategy has never been investigated in the vast majority of species that are known to modify their vocalizations over development. We propose a novel, preliminary evolutionary modelling approach that uses ecological, reproductive and developmental traits to predict which species may incorporate social influences as part of their vocal learning system. We demonstrate our model using data from 28 passerines. We found three highly predictive traits: temporal overlap between sensory (memorization) and sensorimotor (practice) phases of song learning, song used for mate attraction, and social gregariousness outside the breeding season. Species with these traits were distributed throughout the clade, suggesting that a trait-based approach may yield new insights into the evolution of learning strategies that cannot be gleaned from phylogenetic relatedness alone. Our model suggests several previously uninvestigated and unexpected species as likely socially guided vocal learners and offers new insight into the evolution and development of vocal learning. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
|
19
|
Searcy WA, Soha J, Peters S, Nowicki S. Variation in vocal production learning across songbirds. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200257. [PMID: 34482719 PMCID: PMC8419578 DOI: 10.1098/rstb.2020.0257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
Songbirds as a whole are considered to be vocal production learners, meaning that they modify the structure of their vocalizations as a result of experience with the vocalizations of others. The more than 4000 species of songbirds, however, vary greatly in crucial features of song development. Variable features include: (i) the normality of the songs of early-deafened birds, reflecting the importance of innate motor programmes in song development; (ii) the normality of the songs of isolation-reared birds, reflecting the combined importance of innate auditory templates and motor programmes; (iii) the degree of selectivity in choice of external models; (iv) the accuracy of copying from external models; and (v) whether or not learning from external models continues into adulthood. We suggest that because of this variability, some songbird species, specifically those that are able to develop songs in the normal range without exposure to external models, can be classified as limited vocal learners. Those species that require exposure to external models to develop songs in the normal range can be considered complex vocal learners. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- William A. Searcy
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Jill Soha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Susan Peters
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
20
|
Colombelli-Négrel D, Hauber ME, Evans C, Katsis AC, Brouwer L, Adreani NM, Kleindorfer S. Prenatal auditory learning in avian vocal learners and non-learners. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200247. [PMID: 34482722 PMCID: PMC8419567 DOI: 10.1098/rstb.2020.0247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding when learning begins is critical for identifying the factors that shape both the developmental course and the function of information acquisition. Until recently, sufficient development of the neural substrates for any sort of vocal learning to begin in songbirds was thought to be reached well after hatching. New research shows that embryonic gene activation and the outcome of vocal learning can be modulated by sound exposure in ovo. We tested whether avian embryos across lineages differ in their auditory response strength and sound learning in ovo, which we studied in vocal learning (Maluridae, Geospizidae) and vocal non-learning (Phasianidae, Spheniscidae) taxa. While measuring heart rate in ovo, we exposed embryos to (i) conspecific or heterospecific vocalizations, to determine their response strength, and (ii) conspecific vocalizations repeatedly, to quantify cardiac habituation, a form of non-associative learning. Response strength towards conspecific vocalizations was greater in two species with vocal production learning compared to two species without. Response patterns consistent with non-associative auditory learning occurred in all species. Our results demonstrate a capacity to perceive and learn to recognize sounds in ovo, as evidenced by habituation, even in species that were previously assumed to have little, if any, vocal production learning. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine Evans
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Andrew C Katsis
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Lyanne Brouwer
- Department of Animal Ecology & Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Patel AD. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200326. [PMID: 34420384 PMCID: PMC8380969 DOI: 10.1098/rstb.2020.0326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
The human capacity to synchronize movements to an auditory beat is central to musical behaviour and to debates over the evolution of human musicality. Have humans evolved any neural specializations for music processing, or does music rely entirely on brain circuits that evolved for other reasons? The vocal learning and rhythmic synchronization hypothesis proposes that our ability to move in time with an auditory beat in a precise, predictive and tempo-flexible manner originated in the neural circuitry for complex vocal learning. In the 15 years, since the hypothesis was proposed a variety of studies have supported it. However, one study has provided a significant challenge to the hypothesis. Furthermore, it is increasingly clear that vocal learning is not a binary trait animals have or lack, but varies more continuously across species. In the light of these developments and of recent progress in the neurobiology of beat processing and of vocal learning, the current paper revises the vocal learning hypothesis. It argues that an advanced form of vocal learning acts as a preadaptation for sporadic beat perception and synchronization (BPS), providing intrinsic rewards for predicting the temporal structure of complex acoustic sequences. It further proposes that in humans, mechanisms of gene-culture coevolution transformed this preadaptation into a genuine neural adaptation for sustained BPS. The larger significance of this proposal is that it outlines a hypothesis of cognitive gene-culture coevolution which makes testable predictions for neuroscience, cross-species studies and genetics. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, USA
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
22
|
Gordon RL, Ravignani A, Hyland Bruno J, Robinson CM, Scartozzi A, Embalabala R, Niarchou M, Cox NJ, Creanza N. Linking the genomic signatures of human beat synchronization and learned song in birds. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200329. [PMID: 34420388 DOI: 10.1098/rstb.2020.0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Reyna L Gordon
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Cristina M Robinson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Alyssa Scartozzi
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Rebecca Embalabala
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Maria Niarchou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | -
- 23andMe, Inc., Sunnyvale, CA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Nicole Creanza
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
23
|
Rose EM, Prior NH, Ball GF. The singing question: re-conceptualizing birdsong. Biol Rev Camb Philos Soc 2021; 97:326-342. [PMID: 34609054 DOI: 10.1111/brv.12800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023]
Abstract
Birdsong has been the subject of broad research from a variety of sub-disciplines and has taught us much about the evolution, function, and mechanisms driving animal communication and cognition. Typically, birdsong refers to the specialized vocalizations produced by oscines. Historically, much of the research on birdsong was conducted in north temperate regions (specifically in Europe and North America) leading to multiple biases. Due to these historic biases these vocalizations are generally considered to be highly sexually dimorphic, heavily shaped by sexual selection and essential for courtship and territoriality. Song is also typically defined as a learned trait shaped by cultural evolution. Together, this framework focuses research specifically on males, particularly during the north temperate breeding season - reflecting and thereby reinforcing this framework. The physiological underpinnings of song often emphasize the role of the hypothalamic-pituitary-gonadal axis (associated with breeding changes) and the song control system (underlying vocal learning). Over the years there has been great debate over which features of song are essential to the definition of birdsong, which features apply broadly to contexts outside males in the north temperate region, and over the importance of having a definition at all. Importantly, the definitions we use can both guide and limit the progress of research. Here, we describe the history of these definitions, and how these definitions have directed and restricted research to focus on male song in sexually selected contexts. Additionally, we highlight the gaps in our scientific knowledge, especially with respect to the function and physiological mechanisms underlying song in females and in winter, as well as in non-seasonally breeding species. Furthermore, we highlight the problems with using complexity and learning as dichotomous variables to categorize songs and calls. Across species, no one characteristic of song - sexual dimorphism, seasonality, complexity, sexual selection, learning - consistently delineates song from other songbird vocal communication. We provide recommendations for next steps to build an inclusive information framework that will allow researchers to explore nuances in animal communication and promote comparative research. Specifically, we recommend that researchers should operationalize the axis of variation most relevant to their study/species by identifying their specific question and the variable(s) of focus (e.g. seasonality). Researchers should also identify the axis (axes) of variation (e.g. degree of control by testosterone) most relevant to their study and use language consistent with the question and axis (axes) of variation (e.g. control by testosterone in the seasonal vocal production of birds).
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, 4094 Campus Dr., College Park, MD, 20742, U.S.A.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, 0219 Cole Student Activities Building, 4090 Union Drive, College Park, MD, 20742, U.S.A
| | - Nora H Prior
- Department of Psychology, University of Maryland, College Park, 4094 Campus Dr., College Park, MD, 20742, U.S.A.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, 0219 Cole Student Activities Building, 4090 Union Drive, College Park, MD, 20742, U.S.A
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, 4094 Campus Dr., College Park, MD, 20742, U.S.A.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, 0219 Cole Student Activities Building, 4090 Union Drive, College Park, MD, 20742, U.S.A
| |
Collapse
|
24
|
Abstract
A cross-species perspective can extend and provide testable predictions for Savage et al.'s framework. Rhythm and melody, I argue, could bootstrap each other in the evolution of musicality. Isochrony may function as a temporal grid to support rehearsing and learning modulated, pitched vocalizations. Once this melodic plasticity is acquired, focus can shift back to refining rhythm processing and beat induction.
Collapse
|
25
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|
26
|
Wright TF, Derryberry EP. Defining the multidimensional phenotype: New opportunities to integrate the behavioral ecology and behavioral neuroscience of vocal learning. Neurosci Biobehav Rev 2021; 125:328-338. [PMID: 33621636 PMCID: PMC8628558 DOI: 10.1016/j.neubiorev.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Vocal learning has evolved independently in several lineages. This complex cognitive trait is commonly treated as binary: species either possess or lack it. This view has been a useful starting place to examine the origins of vocal learning, but is also incomplete and potentially misleading, as specific components of the vocal learning program - such as the timing, extent and nature of what is learned - vary widely among species. In our review we revive an idea first proposed by Beecher and Brenowitz (2005) by describing six dimensions of vocal learning: (1) which vocalizations are learned, (2) how much is learned, (3) when it is learned, (4) who it is learned from, (5) what is the extent of the internal template, and (6) how is the template integrated with social learning and innovation. We then highlight key examples of functional and mechanistic work on each dimension, largely from avian taxa, and discuss how a multi-dimensional framework can accelerate our understanding of why vocal learning has evolved, and how brains became capable of this important behaviour.
Collapse
Affiliation(s)
- Timothy F Wright
- Dept of Biology, New Mexico State Univ, Las Cruces, NM, 88005, USA.
| | | |
Collapse
|
27
|
Abstract
Coordination of behavior for cooperative performances often relies on linkages mediated by sensory cues exchanged between participants. How neurophysiological responses to sensory information affect motor programs to coordinate behavior between individuals is not known. We investigated how plain-tailed wrens (Pheugopedius euophrys) use acoustic feedback to coordinate extraordinary duet performances in which females and males rapidly take turns singing. We made simultaneous neurophysiological recordings in a song control area "HVC" in pairs of singing wrens at a field site in Ecuador. HVC is a premotor area that integrates auditory feedback and is necessary for song production. We found that spiking activity of HVC neurons in each sex increased for production of its own syllables. In contrast, hearing sensory feedback produced by the bird's partner decreased HVC activity during duet singing, potentially coordinating HVC premotor activity in each bird through inhibition. When birds sang alone, HVC neurons in females but not males were inhibited by hearing the partner bird. When birds were anesthetized with urethane, which antagonizes GABAergic (γ-aminobutyric acid) transmission, HVC neurons were excited rather than inhibited, suggesting a role for GABA in the coordination of duet singing. These data suggest that HVC integrates information across partners during duets and that rapid turn taking may be mediated, in part, by inhibition.
Collapse
|
28
|
Fischer J, Wegdell F, Trede F, Dal Pesco F, Hammerschmidt K. Vocal convergence in a multi-level primate society: insights into the evolution of vocal learning. Proc Biol Sci 2020; 287:20202531. [PMID: 33323082 PMCID: PMC7779498 DOI: 10.1098/rspb.2020.2531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
The extent to which nonhuman primate vocalizations are amenable to modification through experience is relevant for understanding the substrate from which human speech evolved. We examined the vocal behaviour of Guinea baboons, Papio papio, ranging in the Niokolo Koba National Park in Senegal. Guinea baboons live in a multi-level society, with units nested within parties nested within gangs. We investigated whether the acoustic structure of grunts of 27 male baboons of two gangs varied with party/gang membership and genetic relatedness. Males in this species are philopatric, resulting in increased male relatedness within gangs and parties. Grunts of males that were members of the same social levels were more similar than those of males in different social levels (N = 351 dyads for comparison within and between gangs, and N = 169 dyads within and between parties), but the effect sizes were small. Yet, acoustic similarity did not correlate with genetic relatedness, suggesting that higher amounts of social interactions rather than genetic relatedness promote the observed vocal convergence. We consider this convergence a result of sensory-motor integration and suggest this to be an implicit form of vocal learning shared with humans, in contrast to the goal-directed and intentional explicit form of vocal learning unique to human speech acquisition.
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg August University Göttingen, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Franziska Wegdell
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Franziska Trede
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Federica Dal Pesco
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| |
Collapse
|
29
|
Shamma S, Patel P, Mukherjee S, Marion G, Khalighinejad B, Han C, Herrero J, Bickel S, Mehta A, Mesgarani N. Learning Speech Production and Perception through Sensorimotor Interactions. Cereb Cortex Commun 2020; 2:tgaa091. [PMID: 33506209 PMCID: PMC7811190 DOI: 10.1093/texcom/tgaa091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Action and perception are closely linked in many behaviors necessitating a close coordination between sensory and motor neural processes so as to achieve a well-integrated smoothly evolving task performance. To investigate the detailed nature of these sensorimotor interactions, and their role in learning and executing the skilled motor task of speaking, we analyzed ECoG recordings of responses in the high-γ band (70-150 Hz) in human subjects while they listened to, spoke, or silently articulated speech. We found elaborate spectrotemporally modulated neural activity projecting in both "forward" (motor-to-sensory) and "inverse" directions between the higher-auditory and motor cortical regions engaged during speaking. Furthermore, mathematical simulations demonstrate a key role for the forward projection in "learning" to control the vocal tract, beyond its commonly postulated predictive role during execution. These results therefore offer a broader view of the functional role of the ubiquitous forward projection as an important ingredient in learning, rather than just control, of skilled sensorimotor tasks.
Collapse
Affiliation(s)
- Shihab Shamma
- Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
- Laboratoire des Systèmes Perceptifs, Department des Etudes Cognitive, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Prachi Patel
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Guilhem Marion
- Laboratoire des Systèmes Perceptifs, Department des Etudes Cognitive, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Bahar Khalighinejad
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Cong Han
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jose Herrero
- Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Stephan Bickel
- Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Ashesh Mehta
- Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY, USA
- The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Molecular specializations of deep cortical layer analogs in songbirds. Sci Rep 2020; 10:18767. [PMID: 33127988 PMCID: PMC7599217 DOI: 10.1038/s41598-020-75773-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin.
Collapse
|
31
|
Garcia M, Ravignani A. Acoustic allometry and vocal learning in mammals. Biol Lett 2020; 16:20200081. [PMID: 32634374 PMCID: PMC7423041 DOI: 10.1098/rsbl.2020.0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acoustic allometry is the study of how animal vocalizations reflect their body size. A key aim of this research is to identify outliers to acoustic allometry principles and pinpoint the evolutionary origins of such outliers. A parallel strand of research investigates species capable of vocal learning, the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. Modification of vocalizations is a common feature found when studying both acoustic allometry and vocal learning. Yet, these two fields have only been investigated separately to date. Here, we review and connect acoustic allometry and vocal learning across mammalian clades, combining perspectives from bioacoustics, anatomy and evolutionary biology. Based on this, we hypothesize that, as a precursor to vocal learning, some species might have evolved the capacity for volitional vocal modulation via sexual selection for 'dishonest' signalling. We provide preliminary support for our hypothesis by showing significant associations between allometric deviation and vocal learning in a dataset of 164 mammals. Our work offers a testable framework for future empirical research linking allometric principles with the evolution of vocal learning.
Collapse
Affiliation(s)
- Maxime Garcia
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8051 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG Pieterburen, The Netherlands
| |
Collapse
|
32
|
Lattenkamp EZ, Vernes SC, Wiegrebe L. Vocal production learning in the pale spear-nosed bat, Phyllostomus discolor. Biol Lett 2020; 16:20190928. [PMID: 32289244 PMCID: PMC7211467 DOI: 10.1098/rsbl.2019.0928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Vocal production learning (VPL), or the ability to modify vocalizations through the imitation of sounds, is a rare trait in the animal kingdom. While humans are exceptional vocal learners, few other mammalian species share this trait. Owing to their singular ecology and lifestyle, bats are highly specialized for the precise emission and reception of acoustic signals. This specialization makes them ideal candidates for the study of vocal learning, and several bat species have previously shown evidence supportive of vocal learning. Here we use a sophisticated automated set-up and a contingency training paradigm to explore the vocal learning capacity of pale spear-nosed bats. We show that these bats are capable of directional change of the fundamental frequency of their calls according to an auditory target. With this study, we further highlight the importance of bats for the study of vocal learning and provide evidence for the VPL capacity of the pale spear-nosed bat.
Collapse
Affiliation(s)
- Ella Z Lattenkamp
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Division of Neurobiology, Ludwig-Maximilians University Munich, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lutz Wiegrebe
- Division of Neurobiology, Ludwig-Maximilians University Munich, Germany
| |
Collapse
|
33
|
Burchardt LS, Knörnschild M. Comparison of methods for rhythm analysis of complex animals' acoustic signals. PLoS Comput Biol 2020; 16:e1007755. [PMID: 32267836 PMCID: PMC7141653 DOI: 10.1371/journal.pcbi.1007755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Analyzing the rhythm of animals' acoustic signals is of interest to a growing number of researchers: evolutionary biologists want to disentangle how these structures evolved and what patterns can be found, and ecologists and conservation biologists aim to discriminate cryptic species on the basis of parameters of acoustic signals such as temporal structures. Temporal structures are also relevant for research on vocal production learning, a part of which is for the animal to learn a temporal structure. These structures, in other words, these rhythms, are the topic of this paper. How can they be investigated in a meaningful, comparable and universal way? Several approaches exist. Here we used five methods to compare their suitability and interpretability for different questions and datasets and test how they support the reproducibility of results and bypass biases. Three very different datasets with regards to recording situation, length and context were analyzed: two social vocalizations of Neotropical bats (multisyllabic, medium long isolation calls of Saccopteryx bilineata, and monosyllabic, very short isolation calls of Carollia perspicillata) and click trains of sperm whales, Physeter macrocephalus. Techniques to be compared included Fourier analysis with a newly developed goodness-of-fit value, a generate-and-test approach where data was overlaid with varying artificial beats, and the analysis of inter-onset-intervals and calculations of a normalized Pairwise Variability Index (nPVI). We discuss the advantages and disadvantages of the methods and we also show suggestions on how to best visualize rhythm analysis results. Furthermore, we developed a decision tree that will enable researchers to select a suitable and comparable method on the basis of their data.
Collapse
Affiliation(s)
- Lara S. Burchardt
- Museum für Naturkunde, Invalidenstraße, Berlin, Germany
- Animal Behavior Lab, Free University Berlin, Berlin, Germany
| | - Mirjam Knörnschild
- Museum für Naturkunde, Invalidenstraße, Berlin, Germany
- Animal Behavior Lab, Free University Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Barro Colorado Island, Balboa, Ancón, Panamá
| |
Collapse
|
34
|
Abstract
Vocal learning is the ability to modify vocal output on the basis of experience. Traditionally, species have been classified as either displaying or lacking this ability. A recent proposal, the vocal learning continuum, recognizes the need to have a more nuanced view of this phenotype and abandon the yes–no dichotomy. However, it also limits vocal learning to production of novel calls through imitation, moreover subserved by a forebrain-to-phonatory-muscles circuit. We discuss its limitations regarding the characterization of vocal learning across species and argue for a more permissive view. Vocal learning is the capacity to modify vocal output on the basis of experience, crucial for human speech and several animal communication systems. This Essay maintains that the existing evidence supports a more nuanced view of this phenotype, broadening the set of species, behaviors, and factors that can help us understand it.
Collapse
Affiliation(s)
- Pedro Tiago Martins
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
- * E-mail:
| | - Cedric Boeckx
- University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
35
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|