1
|
Bertoli M, Zappasodi F, Croce P, De Iure D, Pettorruso M, Cavallotto C, Martinotti G, Di Matteo R, Brunetti M. Inhibitory control in Bipolar Disorder disclosed by theta band modulation. J Affect Disord 2025; 379:58-71. [PMID: 40058466 DOI: 10.1016/j.jad.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Cognitive inhibition is key to cognitive control in healthy and psychiatric conditions. Bipolar Disorder (BD) individuals display a range of inhibitory deficits and high levels of impulsivity across all stages of the disease, including euthymia. METHODS We tested how the inhibition of heuristics in favor of analytical strategies influences the elaboration of sentences with logical quantifiers by means of a sentence-picture matching task in which the processing of quantified sentences containing the logical universal and particular quantifiers was required. Behavioral and brain oscillatory responses were assessed employing EEG recordings. RESULTS In Experiment 1, in a group of healthy volunteers, we demonstrated how the presence of a universal quantifier generates an inhibition, characterized by a high cognitive load, which is resolved at the expense of a poorer behavioral performance compared to a lower cognitive load and neutral control task. In Experiment 2, comparing healthy adults and BD patients, EEG time-frequency analysis showed a different modulation of the theta frequency band localized centrally in the medial frontal areas and representative of the different degrees of cognitive control between groups. LIMITATIONS Electrophysiological description should be interpreted with caution in light of the high signal-to-noise ratio determined by the complexity of the task. CONCLUSIONS Even in euthymia, BD limited availability of resources for cognitive inhibition impacts the functionality of a fronto-parietal cortical network, responsible for cognitive control, and orchestrated by the activity of frontal areas synchronized in theta and beta frequency.
Collapse
Affiliation(s)
- Massimo Bertoli
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy.
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Danilo De Iure
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Clara Cavallotto
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Rosalia Di Matteo
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Marcella Brunetti
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Aliramezani M, Constantinidis C, Daliri MR. Unraveling the roles of spatial working memory sustained and selective neurons in prefrontal cortex. Commun Biol 2025; 8:767. [PMID: 40394380 PMCID: PMC12092697 DOI: 10.1038/s42003-025-08211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
The heart of goal-directed behavior organization is working memory. Recent studies have emphasized the critical role of the prefrontal cortex (PFC) in working memory, highlighting elevated spiking levels in PFC neurons during working-memory delays. As a higher-order cortex, PFC contains various types of neurons with complex receptive fields, making it challenging to identify task-engaged neurons, particularly during the working memory periods when firing rates are lower compared to stimulus periods. While previous studies have primarily focused on neurons selective for sensory stimuli, there are also task-sustained neurons that are not selective for specific stimulus characteristics. In this study, we differentiate between working memory (WM)-sustained neurons, which show task-related activity without stimulus spatial selectivity, and working memory (WM)-selective neurons, which are selective for the location of the stimulus. To investigate their roles, we investigated the neural activities of the lateral PFC neurons in two macaque monkeys during a spatial working memory task. Fano factor analysis revealed that the neuronal variability of both WM-selective and WM-sustained neurons was similar and significantly higher than that of non-active neurons (neurons not modulated by the task). Moreover, the Fano factor of active neurons diminished during error trials compared to correct trials. The spike phase locking (SPL) value was measured to evaluate the coupling of local field potentials (LFPs) phases to spike times, considering neural network characteristics. SPL results indicated that both WM-selective neurons and WM-sustained neurons exhibited higher SPL in the alpha/beta-band compared to non-active neurons. Additionally, the alpha/beta-band SPL of working memory-active neurons decreased during error trials. In summary, despite the non-stimulus-specific activation of WM-sustained neurons, they may contribute to task performance alongside WM-selective neurons.
Collapse
Affiliation(s)
- Mohammad Aliramezani
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
3
|
Zhang S, Song Y, Lv S, Jing L, Wang M, Liu Y, Xu W, Jiao P, Zhang S, Wang M, Liu J, Wu Y, Cai X. Electrode Arrays for Detecting and Modulating Deep Brain Neural Information in Primates: A Review. CYBORG AND BIONIC SYSTEMS 2025; 6:0249. [PMID: 40321898 PMCID: PMC12046227 DOI: 10.34133/cbsystems.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025] Open
Abstract
Primates possess a more developed central nervous system and a higher level of intelligence than rodents. Detecting and modulating deep brain activity in primates enhances our understanding of neural mechanisms, facilitates the study of major brain diseases, enables brain-computer interactions, and supports advancements in artificial intelligence. Traditional imaging methods such as magnetic resonance imaging, positron emission computed tomography, and scalp electroencephalogram are limited in spatial resolution. They cannot accurately capture deep brain signals from individual neurons. With the progress of microelectromechanical systems and other micromachining technologies, single-neuron level detection and stimulation technology in rodents based on microelectrodes has made important progress. However, compared with rodents, human and nonhuman primates have larger brain volume that needs deeper implantation depth, and the test object has higher safety and device preparation requirements. Therefore, high-resolution devices suitable for long-term detection in the brains of primates are urgently needed. This paper reviewed electrode array devices used for electrophysiological and electrochemical detections in primates' deep brains. The research progress of neural recording and stimulation technologies was introduced from the perspective of electrode type and device structures, and their potential value in neuroscience research and clinical disease treatments was discussed. Finally, it is speculated that future electrodes will have a lot of room for development in terms of flexibility, high resolution, deep brain, and high throughput. The improvements in electrode forms and preparation process will expand our understanding of deep brain neural activities, and bring new opportunities and challenges for the further development of neuroscience.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchuan Wang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suyi Zhang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Nigro M, Tortorelli LS, Garad M, Zlebnik NE, Yang H. Locus coeruleus modulation of single-cell representation and population dynamics in the mouse prefrontal cortex during attentional switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571356. [PMID: 38168151 PMCID: PMC10760137 DOI: 10.1101/2023.12.13.571356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of pharmacology and lesion studies, the precise neurophysiological mechanisms that underlie behavioral flexibility are still under active investigations. This work is aimed to determine the role of a brainstem-to-prefrontal cortex circuit in flexible rule switching. We trained mice to perform a set-shifting task, in which they learned to switch attention to distinguish complex sensory cues. Using chemogenetic inhibition, we selectively targeted genetically-defined locus coeruleus (LC) neurons or their input to the medial prefrontal cortex (mPFC). We revealed that suppressing either the LC or its mPFC projections severely impaired switching behavior, establishing the critical role of the LC-mPFC circuit in supporting attentional switching. To uncover the neurophysiological substrates of the behavioral deficits, we paired endoscopic calcium imaging of the mPFC with chemogenetic inhibition of the LC in task-performing mice. We found that mPFC prominently responded to attentional switching and that LC inhibition not only enhanced the engagement of mPFC neurons but also broadened single-neuron tuning in the task. At the population level, LC inhibition disrupted mPFC dynamic changes and impaired the encoding capacity for switching. Our results highlight the profound impact of the ascending LC input on modulating prefrontal dynamics and provide new insights into the cellular and circuit-level mechanisms that support behavioral flexibility.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Natalie E Zlebnik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Hilla Y, Peylo C, Sauseng P. Prefrontal working memory activity slots support sequence memory similar to hippocampal long-term memory position recall. Neuron 2025; 113:189-191. [PMID: 39848229 DOI: 10.1016/j.neuron.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
Prefrontal cortex and medial temporal lobe information processing might not be that different after all. In this issue of Neuron, Whittington et al.1 show that prefrontal cortex working memory slot activity enables sequence memorizing similar to hippocampal long-term memory. Here, this approach is outlined and its implications are discussed.
Collapse
Affiliation(s)
- Yannik Hilla
- Neuropsychology and Cognitive Neuroscience Unit, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Charline Peylo
- Neuropsychology and Cognitive Neuroscience Unit, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Paul Sauseng
- Neuropsychology and Cognitive Neuroscience Unit, Department of Psychology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Hackett TA, Cuzon Carlson VC, Constantinidis C, Lapish CC, Grant KA, Siciliano CA. Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits. Curr Biol 2025; 35:431-443.e4. [PMID: 39765226 PMCID: PMC11832050 DOI: 10.1016/j.cub.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/03/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions.1,2 It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes.3,4,5,6,7 In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.3,8 Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity.4,9 Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output.4,5,10 Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated.5,9,11,12 Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kirsty R Erickson
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Wilson R Adams
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen E Mcgonigle
- Department of Psychology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Michelle H Kwon
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Vincent D Costa
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Department of Psychology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Khamassi M, Peyrache A, Benchenane K, Hopkins DA, Lebas N, Douchamps V, Droulez J, Battaglia FP, Wiener SI. Rat anterior cingulate neurons responsive to rule or strategy changes are modulated by the hippocampal theta rhythm and sharp-wave ripples. Eur J Neurosci 2024; 60:5300-5327. [PMID: 39161082 DOI: 10.1111/ejn.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Collapse
Affiliation(s)
- M Khamassi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - A Peyrache
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - K Benchenane
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - D A Hopkins
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Lebas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - V Douchamps
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - J Droulez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - F P Battaglia
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Donders Institute for Brain, Cognition, and Behavior, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - S I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
9
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. Neuron 2024; 112:2631-2644.e6. [PMID: 38823391 PMCID: PMC11309918 DOI: 10.1016/j.neuron.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA; The Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Viswanathan P, Stein AM, Nieder A. Sequential neuronal processing of number values, abstract decision, and action in the primate prefrontal cortex. PLoS Biol 2024; 22:e3002520. [PMID: 38364194 PMCID: PMC10871863 DOI: 10.1371/journal.pbio.3002520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of neuronal representations in the primate prefrontal cortex (PFC). We trained monkeys to judge whether a pair of sequentially presented displays had the same number of items. We used a combination of single neuron and population-level analyses and discovered a sequential transformation of represented information with trial progression. While numerical values were initially represented with high precision and in conjunction with detailed information such as order, the decision was encoded in a low-dimensional subspace of neural activity. This decision encoding was invariant to both retrospective numerical values and prospective motor plans, representing only the binary judgment of "same number" versus "different number," thus facilitating the generalization of decisions to novel number pairs. We conclude that this transformation of neuronal codes within the prefrontal cortex supports cognitive flexibility and generalizability of decisions to new conditions.
Collapse
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Anna M. Stein
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572176. [PMID: 38187638 PMCID: PMC10769221 DOI: 10.1101/2023.12.18.572176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prefrontal cortex is extensively involved in social exchange. During dyadic gaze interaction, multiple prefrontal areas exhibit neuronal encoding of social gaze events and context-specific mutual eye contact, supported by a widespread neural mechanism of social gaze monitoring. To explore causal manipulation of real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events to three prefrontal areas in monkeys. Microstimulations of orbitofrontal cortex (OFC), but not dorsomedial prefrontal or anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing distance of one's gaze fixations relative to partner monkey's eyes. In the temporal dimension, microstimulations of OFC reduced the inter-looking interval for attending to another agent and the latency to reciprocate other's directed gaze. These findings demonstrate that primate OFC serves as a functionally accessible node in controlling dynamic social attention and suggest its potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R. Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Lin XX, Nieder A, Jacob SN. The neuronal implementation of representational geometry in primate prefrontal cortex. SCIENCE ADVANCES 2023; 9:eadh8685. [PMID: 38091404 PMCID: PMC10848744 DOI: 10.1126/sciadv.adh8685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Modern neuroscience has seen the rise of a population-doctrine that represents cognitive variables using geometrical structures in activity space. Representational geometry does not, however, account for how individual neurons implement these representations. Leveraging the principle of sparse coding, we present a framework to dissect representational geometry into biologically interpretable components that retain links to single neurons. Applied to extracellular recordings from the primate prefrontal cortex in a working memory task with interference, the identified components revealed disentangled and sequential memory representations including the recovery of memory content after distraction, signals hidden to conventional analyses. Each component was contributed by small subpopulations of neurons with distinct spiking properties and response dynamics. Modeling showed that such sparse implementations are supported by recurrently connected circuits as in prefrontal cortex. The perspective of neuronal implementation links representational geometries to their cellular constituents, providing mechanistic insights into how neural systems encode and process information.
Collapse
Affiliation(s)
- Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Germany
| | | | - Simon N. Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
13
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Lapish CC, Hackett TA, Cuzon Carlson VC, Constantinidis C, Grant KA, Siciliano CA. Recurrent activity within microcircuits of macaque dorsolateral prefrontal cortex tracks cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559125. [PMID: 38529503 PMCID: PMC10962741 DOI: 10.1101/2023.09.23.559125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Human and non-human primate data clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions 1,2 . It is thought that intracortical synaptic architectures within dlPFC are the integral neurobiological substrate that gives rise to these processes, including working memory, inferential reasoning, and decision-making 3-7 . In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the 'canonical' cortical microcircuit 3,8 . Each cortical microcircuit receives sensory and cognitive information from a variety of sources which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity 4,9 . Via recurrent connections within the microcircuit, activity can propagate for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output 4,5,10 . Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo where intercortical and intracortical computations cannot be fully dissociated 5,9,11,12 . Here, we interrogated the intrinsic features of isolated microcircuit networks using high-density calcium imaging of macaque dlPFC ex vivo . We found that spontaneous activity is intrinsically maintained by microcircuit architecture, persisting at a high rate in the absence of extrinsic connections. Further, using perisulcal stimulation to evoke persistent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks, creating predictable population-level events from largely non-overlapping ensembles. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture.
Collapse
|
14
|
Balewski ZZ, Elston TW, Knudsen EB, Wallis JD. Value dynamics affect choice preparation during decision-making. Nat Neurosci 2023; 26:1575-1583. [PMID: 37563295 PMCID: PMC10576429 DOI: 10.1038/s41593-023-01407-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
During decision-making, neurons in the orbitofrontal cortex (OFC) sequentially represent the value of each option in turn, but it is unclear how these dynamics are translated into a choice response. One brain region that may be implicated in this process is the anterior cingulate cortex (ACC), which strongly connects with OFC and contains many neurons that encode the choice response. We investigated how OFC value signals interacted with ACC neurons encoding the choice response by performing simultaneous high-channel count recordings from the two areas in nonhuman primates. ACC neurons encoding the choice response steadily increased their firing rate throughout the decision-making process, peaking shortly before the time of the choice response. Furthermore, the value dynamics in OFC affected ACC ramping-when OFC represented the more valuable option, ACC ramping accelerated. Because OFC tended to represent the more valuable option more frequently and for a longer duration, this interaction could explain how ACC selects the more valuable response.
Collapse
Affiliation(s)
- Zuzanna Z Balewski
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Thomas W Elston
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Eric B Knudsen
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Joni D Wallis
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Yusif Rodriguez N, McKim TH, Basu D, Ahuja A, Desrochers TM. Monkey Dorsolateral Prefrontal Cortex Represents Abstract Visual Sequences during a No-Report Task. J Neurosci 2023; 43:2741-2755. [PMID: 36868856 PMCID: PMC10089245 DOI: 10.1523/jneurosci.2058-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Monitoring sequential information is an essential component of our daily lives. Many of these sequences are abstract, in that they do not depend on the individual stimuli, but do depend on an ordered set of rules (e.g., chop then stir when cooking). Despite the ubiquity and utility of abstract sequential monitoring, little is known about its neural mechanisms. Human rostrolateral prefrontal cortex (RLPFC) exhibits specific increases in neural activity (i.e., "ramping") during abstract sequences. Monkey dorsolateral prefrontal cortex (DLPFC) has been shown to represent sequential information in motor (not abstract) sequence tasks, and contains a subregion, area 46, with homologous functional connectivity to human RLPFC. To test the prediction that area 46 may represent abstract sequence information, and do so with parallel dynamics to those found in humans, we conducted functional magnetic resonance imaging (fMRI) in three male monkeys. When monkeys performed no-report abstract sequence viewing, we found that left and right area 46 responded to abstract sequential changes. Interestingly, responses to rule and number changes overlapped in right area 46 and left area 46 exhibited responses to abstract sequence rules with changes in ramping activation, similar to that observed in humans. Together, these results indicate that monkey DLPFC monitors abstract visual sequential information, potentially with a preference for different dynamics in the two hemispheres. More generally, these results show that abstract sequences are represented in functionally homologous regions across monkeys and humans.SIGNIFICANCE STATEMENT Daily, we complete sequences that are "abstract" because they depend on an ordered set of rules (e.g., chop then stir when cooking) rather than the identity of individual items. Little is known about how the brain tracks, or monitors, this abstract sequential information. Based on previous human work showing abstract sequence related dynamics in an analogous area, we tested whether monkey dorsolateral prefrontal cortex (DLPFC), specifically area 46, represents abstract sequential information using awake monkey functional magnetic resonance imaging (fMRI). We found that area 46 responded to abstract sequence changes, with a preference for more general responses on the right and dynamics similar to humans on the left. These results suggest that abstract sequences are represented in functionally homologous regions across monkeys and humans.
Collapse
Affiliation(s)
- Nadira Yusif Rodriguez
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Theresa H McKim
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Debaleena Basu
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Aarit Ahuja
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Theresa M Desrochers
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912
| |
Collapse
|
16
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
17
|
Sun W, Li B, Ma C. Muscimol-induced inactivation of the ventral prefrontal cortex impairs counting performance in rhesus monkeys. Sci Prog 2022; 105:368504221141660. [PMID: 36443989 PMCID: PMC10358485 DOI: 10.1177/00368504221141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Numbers are one of the three basic concepts of human abstract thinking. When human beings count, they often point to things, one by one, and read numbers in a positive integer column. The prefrontal cortex plays a wide range of roles in executive functions, including active maintenance and achievement of goals, adaptive coding and exertion of general intelligence, and completion of time complexity events. Nonhuman animals do not use number names, such as "one, two, three," or numerals, such as "1, 2, 3" to "count" in the same way as humans do. Our previous study established an animal model of counting in monkeys. Here, we used this model to determine whether the prefrontal cortex participates in counting in monkeys. Two 5-year-old female rhesus monkeys (macaques), weighing 5.0 kg and 5.5 kg, were selected to train in a counting task, counting from 1 to 5. When their counting task performance stabilized, we performed surgery on the prefrontal cortex to implant drug delivery tubes. After allowing the monkeys' physical condition and counting performance to recover, we injected either muscimol or normal saline into their dorsal and ventral prefrontal cortex. Thereafter, we observed their counting task performance and analyzed the error types and reaction time during the counting task. The monkeys' performance in the counting task decreased significantly after muscimol injection into the ventral prefrontal cortex; however, it was not affected after saline injection into the ventral prefrontal cortex, or after muscimol or saline injection into the dorsal prefrontal cortex. The ventral prefrontal cortex of the monkey is necessary for counting performance.
Collapse
Affiliation(s)
- Weiming Sun
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Abstract
In this issue of Neuron, Chiang et al. examine population coding of self-ordered sequences in prefrontal cortex. They find better decoding, more distributed information, and less variability when order is consistent. Consistent ordering produces reliable population response patterns that may aid planning and memory.
Collapse
Affiliation(s)
- Katherine E Conen
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Theresa M Desrochers
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|