1
|
Stroud JP, Duncan J, Lengyel M. The computational foundations of dynamic coding in working memory. Trends Cogn Sci 2024; 28:614-627. [PMID: 38580528 DOI: 10.1016/j.tics.2024.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Working memory (WM) is a fundamental aspect of cognition. WM maintenance is classically thought to rely on stable patterns of neural activities. However, recent evidence shows that neural population activities during WM maintenance undergo dynamic variations before settling into a stable pattern. Although this has been difficult to explain theoretically, neural network models optimized for WM typically also exhibit such dynamics. Here, we examine stable versus dynamic coding in neural data, classical models, and task-optimized networks. We review principled mathematical reasons for why classical models do not, while task-optimized models naturally do exhibit dynamic coding. We suggest an update to our understanding of WM maintenance, in which dynamic coding is a fundamental computational feature rather than an epiphenomenon.
Collapse
Affiliation(s)
- Jake P Stroud
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
2
|
Soldado-Magraner S, Buonomano DV. Neural Sequences and the Encoding of Time. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:81-93. [PMID: 38918347 DOI: 10.1007/978-3-031-60183-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Converging experimental and computational evidence indicate that on the scale of seconds the brain encodes time through changing patterns of neural activity. Experimentally, two general forms of neural dynamic regimes that can encode time have been observed: neural population clocks and ramping activity. Neural population clocks provide a high-dimensional code to generate complex spatiotemporal output patterns, in which each neuron exhibits a nonlinear temporal profile. A prototypical example of neural population clocks are neural sequences, which have been observed across species, brain areas, and behavioral paradigms. Additionally, neural sequences emerge in artificial neural networks trained to solve time-dependent tasks. Here, we examine the role of neural sequences in the encoding of time, and how they may emerge in a biologically plausible manner. We conclude that neural sequences may represent a canonical computational regime to perform temporal computations.
Collapse
Affiliation(s)
| | - Dean V Buonomano
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zhou S, Seay M, Taxidis J, Golshani P, Buonomano DV. Multiplexing working memory and time in the trajectories of neural networks. Nat Hum Behav 2023; 7:1170-1184. [PMID: 37081099 PMCID: PMC10913811 DOI: 10.1038/s41562-023-01592-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Working memory (WM) and timing are generally considered distinct cognitive functions, but similar neural signatures have been implicated in both. To explore the hypothesis that WM and timing may rely on shared neural mechanisms, we used psychophysical tasks that contained either task-irrelevant timing or WM components. In both cases, the task-irrelevant component influenced performance. We then developed recurrent neural network (RNN) simulations that revealed that cue-specific neural sequences, which multiplexed WM and time, emerged as the dominant regime that captured the behavioural findings. During training, RNN dynamics transitioned from low-dimensional ramps to high-dimensional neural sequences, and depending on task requirements, steady-state or ramping activity was also observed. Analysis of RNN structure revealed that neural sequences relied primarily on inhibitory connections, and could survive the deletion of all excitatory-to-excitatory connections. Our results indicate that in some instances WM is encoded in time-varying neural activity because of the importance of predicting when WM will be used.
Collapse
Affiliation(s)
- Shanglin Zhou
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael Seay
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Semel Institute for Neuroscience and Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Dean V Buonomano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Spike timing-dependent plasticity and memory. Curr Opin Neurobiol 2023; 80:102707. [PMID: 36924615 DOI: 10.1016/j.conb.2023.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Spike timing-dependent plasticity (STDP) is a bidirectional form of synaptic plasticity discovered about 30 years ago and based on the relative timing of pre- and post-synaptic spiking activity with a millisecond precision. STDP is thought to be involved in the formation of memory but the millisecond-precision spike-timing required for STDP is difficult to reconcile with the much slower timescales of behavioral learning. This review therefore aims to expose and discuss recent findings about i) the multiple STDP learning rules at both excitatory and inhibitory synapses in vitro, ii) the contribution of STDP-like synaptic plasticity in the formation of memory in vivo and iii) the implementation of STDP rules in artificial neural networks and memristive devices.
Collapse
|