1
|
Srinivasan K, Lowet E, Gomes B, Desimone R. Stimulus representations in visual cortex shaped by spatial attention and microsaccades. Proc Natl Acad Sci U S A 2025; 122:e2420704122. [PMID: 40424126 DOI: 10.1073/pnas.2420704122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Microsaccades (MSs) are commonly associated with covert spatial attention, yet their impact on cortical processing of visual objects remains unclear. Rhesus macaques, randomly cued to attend to a target object amid distracters, were rewarded for detecting a color change in the target. While spatial attention does not affect the object tuning curves of V4 cells, the direction of MS significantly influenced object representations in V4 throughout the entire trial. Specifically, intervals following an MS toward the target exhibited superior stimulus decoding and sharper tuning curves compared to intervals following an MS away from the target. Furthermore, MSs directed toward the target enhanced neuronal responses to behaviorally relevant color changes, leading to faster reaction times. This sharpening effect stems from both a refreshing of the initial sensory response and an amplification of attention effects. The firing rate enhancement associated with spatial attention is delayed until the occurrence of the first MS directed toward the target. Subsequently, a positive effect of attention on firing rate, influenced by MS direction, was found throughout the trial across deep and superficial layers of V4, lateral pulvinar, and IT cortex. In summary, these findings underscore a crucial link between covert attention, object processing, and their coordination with MSs.
Collapse
Affiliation(s)
- Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric Lowet
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GE, The Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Bruno Gomes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Laboratório de Simulação e Biologia Computacional, Centro de Computação de Alto Desempenho, Universidade Federal do Pará, Belém-Pa 66075-110, Brazil
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Kumagai S, Shiramatsu TI, Kawai K, Takahashi H. Vagus nerve stimulation as a predictive coding modulator that enhances feedforward over feedback transmission. Front Neural Circuits 2025; 19:1568655. [PMID: 40297016 PMCID: PMC12034665 DOI: 10.3389/fncir.2025.1568655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Vagus nerve stimulation (VNS) has emerged as a promising therapeutic intervention across various neurological and psychiatric conditions, including epilepsy, depression, and stroke rehabilitation; however, its mechanisms of action on neural circuits remain incompletely understood. Here, we present a novel theoretical framework based on predictive coding that conceptualizes VNS effects through differential modulation of feedforward and feedback neural circuits. Based on recent evidence, we propose that VNS shifts the balance between feedforward and feedback processing through multiple neuromodulatory systems, resulting in enhanced feedforward signal transmission. This framework integrates anatomical pathways, receptor distributions, and physiological responses to explain the influence of the VNS on neural dynamics across different spatial and temporal scales. Vagus nerve stimulation may facilitate neural plasticity and adaptive behavior through acetylcholine and noradrenaline (norepinephrine), which differentially modulate feedforward and feedback signaling. This mechanistic understanding serves as a basis for interpreting the cognitive and therapeutic outcomes across different clinical conditions. Our perspective provides a unified theoretical framework for understanding circuit-specific VNS effects and suggests new directions for investigating their therapeutic mechanisms.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Han HB, Brincat SL, Buschman TJ, Miller EK. Working memory readout varies with frontal theta rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645781. [PMID: 40196622 PMCID: PMC11974852 DOI: 10.1101/2025.03.27.645781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Increasing evidence suggests that attention varies rhythmically, phase-locked to ongoing cortical oscillations. Here, we report that the phase of theta oscillations (3-6 Hz) in the frontal eye field (FEF) is associated with temporal and spatial variation of the read-out of information from working memory (WM). Non-human primates were briefly shown a sample array of colored squares. A short time later, they viewed a test array and were rewarded for identifying which square changed color (the target). Better performance (accuracy and reaction time) varied systematically with the phase of local field potential (LFP) theta at the time of test array onset as well as the target's location. This is consistent with theta "scanning" across the FEF and thus visual space from top to bottom. Theta was coupled, on opposing phases, to both spiking and beta (12-20 Hz). These results could be explained by a wave of activity that moves across the FEF, modulating the readout of information from WM.
Collapse
Affiliation(s)
- Hio-Been Han
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, United States
- School of Convergence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| | - Timothy J Buschman
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| |
Collapse
|
4
|
Wass SV, Perapoch Amadó M, Northrop T, Marriott Haresign I, Phillips EAM. Foraging and inertia: Understanding the developmental dynamics of overt visual attention. Neurosci Biobehav Rev 2025; 169:105991. [PMID: 39722410 DOI: 10.1016/j.neubiorev.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
During early life, we develop the ability to choose what we focus on and what we ignore, allowing us to regulate perception and action in complex environments. But how does this change influence how we spontaneously allocate attention to real-world objects during free behaviour? Here, in this narrative review, we examine this question by considering the time dynamics of spontaneous overt visual attention, and how these develop through early life. Even in early childhood, visual attention shifts occur both periodically and aperiodically. These reorientations become more internally controlled as development progresses. Increasingly with age, attention states also develop self-sustaining attractor dynamics, known as attention inertia, in which the longer an attention episode lasts, the more the likelihood increases of its continuing. These self-sustaining dynamics are driven by amplificatory interactions between engagement, comprehension, and distractibility. We consider why experimental measures show decline in sustained attention over time, while real-world visual attention often demonstrates the opposite pattern. Finally, we discuss multi-stable attention states, where both hypo-arousal (mind-wandering) and hyper-arousal (fragmentary attention) may also show self-sustaining attractor dynamics driven by moment-by-moment amplificatory child-environment interactions; and we consider possible applications of this work, and future directions.
Collapse
Affiliation(s)
- S V Wass
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK.
| | - M Perapoch Amadó
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| | - T Northrop
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| | - I Marriott Haresign
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| | - E A M Phillips
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| |
Collapse
|
5
|
Mayer J, Mückschel M, Talebi N, Hommel B, Beste C. Directed connectivity in theta networks supports action-effect integration. Neuroimage 2025; 305:120965. [PMID: 39645157 DOI: 10.1016/j.neuroimage.2024.120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
The ability to plan and carry out goal-directed behavior presupposes knowledge about the contingencies between movements and their effects. Ideomotor accounts of action control assume that agents integrate action-effect contingencies by creating action-effect bindings, which associate movement patterns with their sensory consequences. However, the neurophysiological underpinnings of action-effect binding are not yet well understood. Given that theta band activity has been linked to information integration, we thus studied action-effect integration in an electrophysiological study with N = 31 healthy individuals with a strong focus on theta band activity. We examined how information between functional neuroanatomical structures is exchanged to enable action planning. We show that theta band activity in a network encompassing the insular cortex (IC), the anterior temporal lobe (ATL), and the inferior frontal cortex (IFC) supports the establishment of action-effect bindings. All regions revealed bi-directional effective connectivities, indicating information transfer between these regions. The IC and ATL create a loop for information integration and the conceptual abstraction of it. The involvement of anterior regions of the IFC, particularly during the acquisition phase of the action-effect, likely reflects episodic control mechanisms in which a past event defines a "template" of what action-effect is to be expected. Taken together, the current findings connect well with major cognitive concepts. Our study suggests a functional relevance of theta band activity in an IC-ATL-IFC network, which in turn implies that basic ideomotor action-effect integration is implemented through theta band activity and effective connectivities between temporo-frontal structures.
Collapse
Affiliation(s)
- Jasmin Mayer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. NEUROPHOTONICS 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
7
|
Senkowski D, Engel AK. Multi-timescale neural dynamics for multisensory integration. Nat Rev Neurosci 2024; 25:625-642. [PMID: 39090214 DOI: 10.1038/s41583-024-00845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase-amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom-up and cognitive top-down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered.
Collapse
Affiliation(s)
- Daniel Senkowski
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Tan E, Troller-Renfree SV, Morales S, Buzzell GA, McSweeney M, Antúnez M, Fox NA. Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Dev Cogn Neurosci 2024; 67:101404. [PMID: 38852382 PMCID: PMC11214181 DOI: 10.1016/j.dcn.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
The theta band is one of the most prominent frequency bands in the electroencephalography (EEG) power spectrum and presents an interesting paradox: while elevated theta power during resting state is linked to lower cognitive abilities in children and adolescents, increased theta power during cognitive tasks is associated with higher cognitive performance. Why does theta power, measured during resting state versus cognitive tasks, show differential correlations with cognitive functioning? This review provides an integrated account of the functional correlates of theta across different contexts. We first present evidence that higher theta power during resting state is correlated with lower executive functioning, attentional abilities, language skills, and IQ. Next, we review research showing that theta power increases during memory, attention, and cognitive control, and that higher theta power during these processes is correlated with better performance. Finally, we discuss potential explanations for the differential correlations between resting/task-related theta and cognitive functioning, and offer suggestions for future research in this area.
Collapse
Affiliation(s)
- Enda Tan
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20740, USA.
| | | | - Santiago Morales
- Department of Psychology, University of Southern California, CA 90007, USA
| | - George A Buzzell
- Department of Psychology, Florida International University, FL 33199, USA
| | - Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Martín Antúnez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20740, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
9
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Williams JG, Harrison WJ, Beale HA, Mattingley JB, Harris AM. Effects of neural oscillation power and phase on discrimination performance in a visual tilt illusion. Curr Biol 2024; 34:1801-1809.e4. [PMID: 38569544 DOI: 10.1016/j.cub.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1,2,3,4,5 and are theorized to play a critical role in canonical neural computations6,7,8,9 and cognitive processes.10,11,12,13,14 These theories have been supported by findings that detection of visual stimuli fluctuates with the phase of oscillations prior to stimulus onset.15,16,17,18,19,20,21,22,23 However, null results have emerged in studies seeking to demonstrate these effects in visual discrimination tasks,24,25,26,27 raising questions about the generalizability of these phenomena to wider neural processes. Recently, we suggested that methodological limitations may mask effects of phase in higher-level sensory processing.28 To test the generality of phasic influences on perception requires a task that involves stimulus discrimination while also depending on early sensory processing. Here, we examined the influence of oscillation phase on the visual tilt illusion, in which a center grating has its perceived orientation biased away from the orientation of a surround grating29 due to lateral inhibitory interactions in early visual processing.30,31,32 We presented center gratings at participants' subjective vertical angle and had participants report whether the grating appeared tilted clockwise or counterclockwise from vertical on each trial while measuring their brain activity with electroencephalography (EEG). In addition to effects of alpha power and aperiodic slope, we observed robust associations between orientation perception and alpha and theta phase, consistent with fluctuating illusion magnitude across the oscillatory cycle. These results confirm that oscillation phase affects the complex processing involved in stimulus discrimination, consistent with its purported role in canonical computations that underpin cognition.
Collapse
Affiliation(s)
- Jessica G Williams
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia
| | - William J Harrison
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Henry A Beale
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada
| | - Anthony M Harris
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Köster M. The theta-gamma code in predictive processing and mnemonic updating. Neurosci Biobehav Rev 2024; 158:105529. [PMID: 38176633 DOI: 10.1016/j.neubiorev.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Predictive processing has become a leading theory about how the brain works. Yet, it remains an open question how predictive processes are realized in the brain. Here I discuss theta-gamma coupling as one potential neural mechanism for prediction and model updating. Building on Lisman and colleagues SOCRATIC model, theta-gamma coupling has been associated with phase precession and learning phenomena in medio-temporal lobe of rodents, where it completes and retains a sequence of places or items (i.e., predictive models). These sequences may be updated upon prediction errors (i.e., model updating), signaled by dopaminergic inputs from prefrontal networks. This framework, spanning the molecular to the network level, matches excitingly well with recent findings on predictive processing, mnemonic updating, and perceptual foraging for the theta-gamma code in human cognition. In sum, I use the case of theta-gamma coupling to link the predictive processing account, a very general concept of how the brain works, to specific neural processes which may implement predictive processing and model updating at the cognitive, network, cellular and molecular level.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| |
Collapse
|
12
|
Bánki A, Köster M, Cichy RM, Hoehl S. Communicative signals during joint attention promote neural processes of infants and caregivers. Dev Cogn Neurosci 2024; 65:101321. [PMID: 38061133 PMCID: PMC10754706 DOI: 10.1016/j.dcn.2023.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 01/01/2024] Open
Abstract
Communicative signals such as eye contact increase infants' brain activation to visual stimuli and promote joint attention. Our study assessed whether communicative signals during joint attention enhance infant-caregiver dyads' neural responses to objects, and their neural synchrony. To track mutual attention processes, we applied rhythmic visual stimulation (RVS), presenting images of objects to 12-month-old infants and their mothers (n = 37 dyads), while we recorded dyads' brain activity (i.e., steady-state visual evoked potentials, SSVEPs) with electroencephalography (EEG) hyperscanning. Within dyads, mothers either communicatively showed the images to their infant or watched the images without communicative engagement. Communicative cues increased infants' and mothers' SSVEPs at central-occipital-parietal, and central electrode sites, respectively. Infants showed significantly more gaze behaviour to images during communicative engagement. Dyadic neural synchrony (SSVEP amplitude envelope correlations, AECs) was not modulated by communicative cues. Taken together, maternal communicative cues in joint attention increase infants' neural responses to objects, and shape mothers' own attention processes. We show that communicative cues enhance cortical visual processing, thus play an essential role in social learning. Future studies need to elucidate the effect of communicative cues on neural synchrony during joint attention. Finally, our study introduces RVS to study infant-caregiver neural dynamics in social contexts.
Collapse
Affiliation(s)
- Anna Bánki
- University of Vienna, Faculty of Psychology, Vienna, Austria.
| | - Moritz Köster
- University of Regensburg, Institute for Psychology, Regensburg, Germany; Freie Universität Berlin, Faculty of Education and Psychology, Berlin, Germany
| | | | - Stefanie Hoehl
- University of Vienna, Faculty of Psychology, Vienna, Austria
| |
Collapse
|
13
|
Shi C, Zhang C, Chen JF, Yao Z. Enhancement of low gamma oscillations by volitional conditioning of local field potential in the primary motor and visual cortex of mice. Cereb Cortex 2024; 34:bhae051. [PMID: 38425214 DOI: 10.1093/cercor/bhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Volitional control of local field potential oscillations in low gamma band via brain machine interface can not only uncover the relationship between low gamma oscillation and neural synchrony but also suggest a therapeutic potential to reverse abnormal local field potential oscillation in neurocognitive disorders. In nonhuman primates, the volitional control of low gamma oscillations has been demonstrated by brain machine interface techniques in the primary motor and visual cortex. However, it is not clear whether this holds in other brain regions and other species, for which gamma rhythms might involve in highly different neural processes. Here, we established a closed-loop brain-machine interface and succeeded in training mice to volitionally elevate low gamma power of local field potential in the primary motor and visual cortex. We found that the mice accomplished the task in a goal-directed manner and spiking activity exhibited phase-locking to the oscillation in local field potential in both areas. Moreover, long-term training made the power enhancement specific to direct and adjacent channel, and increased the transcriptional levels of NMDA receptors as well as that of hypoxia-inducible factor relevant to metabolism. Our results suggest that volitionally generated low gamma rhythms in different brain regions share similar mechanisms and pave the way for employing brain machine interface in therapy of neurocognitive disorders.
Collapse
Affiliation(s)
- Chennan Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Chenyu Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
14
|
Shaverdi Y, Setarehdan SK, Treue S, Esghaei M. Orchestration of saccadic eye-movements by brain rhythms in macaque Frontal Eye Field. Sci Rep 2023; 13:22725. [PMID: 38123575 PMCID: PMC10733338 DOI: 10.1038/s41598-023-49346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Visual perception has been suggested to operate on temporal 'chunks' of sensory input, rather than on a continuous stream of visual information. Saccadic eye movements impose a natural rhythm on the sensory input, as periods of steady fixation between these rapid eye movements provide distinct temporal segments of information. Ideally, the timing of saccades should be precisely locked to the brain's rhythms of information processing. Here, we investigated such locking of saccades to rhythmic neural activity in rhesus monkeys performing a visual foraging task. We found that saccades are phase-locked to local field potential oscillations (especially, 9-22 Hz) in the Frontal Eye Field, with the phase of oscillations predictive of the saccade onset as early as 100 ms prior to these movements. Our data also indicate a functional role of this phase-locking in determining the direction of saccades. These findings show a tight-and likely important-link between oscillatory brain activity and rhythmic behavior that imposes a rhythmic temporal structure on sensory input, such as saccadic eye movements.
Collapse
Affiliation(s)
- Yeganeh Shaverdi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Seyed Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Westa Higher Education Center, Karaj, Iran.
| |
Collapse
|
15
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythmogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564834. [PMID: 37961254 PMCID: PMC10634953 DOI: 10.1101/2023.10.30.564834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "pre-inspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S Phillips
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA, USA
| |
Collapse
|
16
|
Parto-Dezfouli M, Vezoli J, Bosman CA, Fries P. Enhanced behavioral performance through interareal gamma and beta synchronization. Cell Rep 2023; 42:113249. [PMID: 37837620 PMCID: PMC10679823 DOI: 10.1016/j.celrep.2023.113249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous electrocorticographic recordings from 15 areas of two macaque monkeys during performance of a selective attention task. Short behavioral reaction times (RTs), suggesting efficient interareal communication, occurred when occipital areas V1, V2, V4, and DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, and F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Conrado Arturo Bosman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|