1
|
Chiou LC, Sieghart W. IUPHAR Review: Alpha6-containing GABA A receptors - Novel targets for the treatment of schizophrenia. Pharmacol Res 2025; 213:107613. [PMID: 39848349 DOI: 10.1016/j.phrs.2025.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
α6-containing GABAA receptors (α6GABAARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABAARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow. The cerebellum has strong connections to multiple brain regions via closed loop circuits and is also extensively connected with the dopamine system in the prefrontal cortex, that initiates the execution of behavior. Patients suffering from schizophrenia exhibit an impaired structure and function of the cerebellum and an impaired GABAergic transmission at α6GABAARs. This also impairs the function of the dopamine system, can explain a variety of schizophrenia symptoms observed, and might be one of the pathophysiological causes of schizophrenia. Enhancing GABAergic transmission at α6GABAARs should thus reduce the symptoms of schizophrenia. This recently has been confirmed by demonstrating that positive allosteric modulators with high selectivity for α6GABAARs can reduce positive and negative symptoms and cognitive impairment of schizophrenia in several animal models of this disorder. So far, the beneficial actions of these modulators have been demonstrated in animal models of neuropsychiatric disorders, only. Future human studies have to investigate the safety and possible side effects of these modulators and to clarify, to which extent individual symptoms of schizophrenia can be reduced by these drugs in patients during acute and chronic dosing.
Collapse
Affiliation(s)
- Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Ziolkowski LH, Nikolaev YA, Chikamoto A, Oda M, Feketa VV, Monedero-Alonso D, Ardasheva SA, Bae SS, Xu CS, Pang S, Gracheva EO, Bagriantsev SN. The inner core enables transient touch detection in the Pacinian corpuscle. SCIENCE ADVANCES 2025; 11:eadt4837. [PMID: 40009676 PMCID: PMC11864184 DOI: 10.1126/sciadv.adt4837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
Pacinian corpuscles detect transient touch and vibration in vertebrates. Corpuscles are composed of a mechanoreceptor afferent surrounded by lamellar Schwann cells (LSCs), enclosed by a multilayered outer core. The spatial arrangement of these components and their contribution to sensory tuning are unclear. We report the three-dimensional architecture of the Pacinian corpuscle and reveal the role of its cellular components in touch detection. In the prevailing model, the outer core acts as a mechanical filter that limits static and low-frequency stimuli from reaching the afferent terminal-the presumed sole site of touch detection. We show that the outer core is dispensable for the sensory tuning to transient touch and vibration; instead, these properties arise from the inner core. By acting as additional touch sensors, LSCs potentiate mechanosensitivity of the terminal, which detects touch via fast inactivating ion channels. Thus, functional tuning of the Pacinian corpuscle is enabled by an interplay between mechanosensitive LSCs and the afferent terminal in the inner core.
Collapse
Affiliation(s)
- Luke H. Ziolkowski
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yury A. Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akitoshi Chikamoto
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Viktor V. Feketa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Monedero-Alonso
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Serafima A. Ardasheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuel S. Bae
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Song Pang
- FIB-SEM Collaboration Core, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elena O. Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav N. Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Lu TL, Liutkevičienė R, Rovite V, Gao ZH, Wu SN. Evaluation of Small-Molecule Candidates as Modulators of M-Type K + Currents: Impacts on Current Amplitude, Gating, and Voltage-Dependent Hysteresis. Int J Mol Sci 2025; 26:1504. [PMID: 40003973 PMCID: PMC11855363 DOI: 10.3390/ijms26041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The core subunits of the KV7.2, KV7.3, and KV7.5 channels, encoded by the KCNQ2, KCNQ3, and KCNQ5 genes, are expressed across various cell types and play a key role in generating the M-type K+ current (IK(M)). This current is characterized by an activation threshold at low voltages and displays slow activation and deactivation kinetics. Variations in the amplitude and gating kinetics of IK(M) can significantly influence membrane excitability. Notably, IK(M) demonstrates distinct voltage-dependent hysteresis when subjected to prolonged isosceles-triangular ramp pulses. In this review, we explore various small-molecule modulators that can either inhibit or enhance the amplitude of IK(M), along with their perturbations on its gating kinetics and voltage-dependent hysteresis. The inhibitors of IK(M) highlighted here include bisoprolol, brivaracetam, cannabidiol, nalbuphine, phenobarbital, and remdesivir. Conversely, compounds such as flupirtine, kynurenic acid, naringenin, QO-58, and solifenacin have been shown to enhance IK(M). These modulators show potential as pharmacological or therapeutic strategies for treating certain disorders linked to gain-of-function or loss-of-function mutations in M-type K+ (KV7x or KCNQx) channels.
Collapse
Affiliation(s)
- Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 406040, Taiwan;
| | - Rasa Liutkevičienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Riga, Latvia;
| | - Zi-Han Gao
- Institute of Basic Medical Sciences, College of Medical, National Cheng Kung University, Tainan City 701401, Taiwan;
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, College of Medical, National Cheng Kung University, Tainan City 701401, Taiwan;
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan City 709204, Taiwan
- School of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
4
|
Weston MC. KCN Channels "Cue" Up GABA Release from Astrocytes. Epilepsy Curr 2024; 24:429-430. [PMID: 39540125 PMCID: PMC11556643 DOI: 10.1177/15357597241280504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Glial KCNQ K+ Channels Control Neuronal Output by Regulating GABA Release From Glia in C. elegans Graziano B, Wang L, White OR, Kaplan DH, Fernandez-Abascal J, Bianchi L. Neuron . 2024;112(11):1832–1847.e7. doi: 10.1016/j.neuron.2024.02.013. Epub 2024 Mar 8. PMID: 38460523; PMCID: PMC11156561. KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder. KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans ) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
Collapse
Affiliation(s)
- Matthew C Weston
- Fralin Biomedical Research Institute at Virginia Tech, Center for Neurobiology Research, School of Neuroscience, Virginia Tech
| |
Collapse
|
5
|
Wang C, Zhai J, Chen Y. Novel KCNQ2 missense variant expands the genotype spectrum of DEE7. Neurol Sci 2024; 45:5481-5488. [PMID: 38880853 DOI: 10.1007/s10072-024-07655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND KCNQ is a voltage-gated K + channel that controls neuronal excitability and is mutated in epilepsy and autism spectrum disorder (ASD). We focus on the KV7.2 voltage-gated potassium channel gene (KCNQ2), which is known for its association with developmental delay and various seizures (including self-limited benign familial neonatal epilepsy and epileptic encephalopathy). But the pathogenicity of many variants remains unproven, potentially leading to misinterpretation of their functional consequences. METHODS In this study, we studied a patient who visited Nanhua Hospital. Targeted next-generation sequencing and Sanger sequencing were used to identify the pathogenic variants. Meanwhile, computational models, including hydrogen bonding and docking analyses, suggest that variants cause functional impairment. In addition, functional validation was performed in the drosophila to further evaluate the missense variant in the KCNQ2 gene as the cause of this patient. RESULTS A new missense variant in the KCNQ2 gene was identified: NM_172107.4:c.1007C > A(p.ALa336Glu), which resulted in the change from alanine to glutamate at amino acid position 336 in the KCNQ2 gene. After computational modeling, including hydrogen bond analysis and docking analysis, it is indicated that the variants cause functional impairment. Furthermore, RNAi-mediated KCNQ knockout in flies led to the onset of epileptic behavior, lifespan and climbing capacity were affected, expression of the normal human KCNQ2 rescues the in flies RNAi-mediated KCNQ knockout behavioral abnormalities. CONCLUSION Our findings expands the genetic profile of KCNQ2 and enhances the genotype - phenotype link.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - JinXia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - YongJun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
6
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros CC, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. eLife 2024; 13:RP95402. [PMID: 39422452 PMCID: PMC11488851 DOI: 10.7554/elife.95402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the Caenorhabditis elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells, most notably in gonadal cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel sites of monoaminergic neurotransmitter uptake. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Curtis Loer
- Department of Biology, University of San DiegoSan DiegoUnited States
| | - G Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Daniel M Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Merly C Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
7
|
Ziolkowski LH, Nikolaev YA, Chikamoto A, Oda M, Feketa VV, Monedero-Alonso D, Ardasheva SA, Bae SS, Xu CS, Pang S, Gracheva EO, Bagriantsev SN. Structural and functional dissection of the Pacinian corpuscle reveals an active role of the inner core in touch detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609509. [PMID: 39253434 PMCID: PMC11383032 DOI: 10.1101/2024.08.24.609509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pacinian corpuscles are rapidly adapting mechanoreceptor end-organs that detect transient touch and high-frequency vibration. In the prevailing model, these properties are determined by the outer core, which acts as a mechanical filter limiting static and low-frequency stimuli from reaching the afferent terminal-the sole site of touch detection in corpuscles. Here, we determine the detailed 3D architecture of corpuscular components and reveal their contribution to touch detection. We show that the outer core is dispensable for rapid adaptation and frequency tuning. Instead, these properties arise from the inner core, composed of gap junction-coupled lamellar Schwann cells (LSCs) surrounding the afferent terminal. By acting as additional touch sensing structures, LSCs potentiate mechanosensitivity of the terminal, which detects touch via fast-inactivating ion channels. We propose a model in which Pacinian corpuscle function is mediated by an interplay between mechanosensitive LSCs and the afferent terminal in the inner core.
Collapse
Affiliation(s)
- Luke H. Ziolkowski
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yury A. Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akitoshi Chikamoto
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Viktor V. Feketa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Monedero-Alonso
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Serafima A. Ardasheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuel S. Bae
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Song Pang
- FIB-SEM Collaboration Core, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elena O. Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav N. Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros C, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573258. [PMID: 38895397 PMCID: PMC11185579 DOI: 10.1101/2023.12.24.573258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the C. elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel neurons that uptake monoaminergic neurotransmitters. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Curtis Loer
- Department of Biology, University of San Diego, San Diego, California, USA
| | - G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Daniel M. Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Merly C. Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Cyril Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| |
Collapse
|
9
|
White OR, Graziano B, Bianchi L. Comparison of avoidance assay techniques to determine the response to 1-octanol in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001177. [PMID: 38660566 PMCID: PMC11040396 DOI: 10.17912/micropub.biology.001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
In C. elegans , avoidance behaviors are vital for the nematode's ability to respond to noxious environmental stimuli, including the odorant 1-octanol. To test avoidance to 1-octanol, researchers expose C. elegans to this odorant and determine the time taken to initiate backward locomotion. However, the 1-octanol avoidance assay is sensitive to sensory adaptation, where the avoidance response is reduced due to overexposure to the odorant. Here, we examined two methods to expose nematodes to 1-octanol, using an eyelash hair or a p10 pipette tip, to compare their susceptibility to cause sensory adaptation.
Collapse
Affiliation(s)
- Olivia R. White
- Physiology and Biophysics, University of Miami Health System, Miami, Florida, United States
| | - Bianca Graziano
- Physiology and Biophysics, University of Miami Health System, Miami, Florida, United States
| | - Laura Bianchi
- Physiology and Biophysics, University of Miami Health System, Miami, Florida, United States
| |
Collapse
|
10
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|