1
|
Chen L, Li Y, Yu Y, Cai M, Li H, Huang M, Yang G, Guo J, Wang H, Song Z, Shen W, Jiang H, Wu H. EFTUD2 Regulates Cortical Morphogenesis via Modulation of Caspase-3 and Aifm1 Splicing Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04200. [PMID: 40448601 DOI: 10.1002/advs.202504200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Elongation Factor Tu GTP-Binding Domain Containing 2 (EFTUD2), a core spliceosomal GTPase associated with Mandibulofacial Dysostosis with Microcephaly (MFDM), plays a mechanistically undefined role in cerebral development. To investigate its pathophysiological contributions, murine models are generated through conditional Eftud2 ablation and in utero electroporation of human pathogenic EFTUD2 variants into cortical neural stem cells (NSCs). Embryonic NSC-specific Eftud2 knockout resulted in cortical disorganization and microcephaly, while pathogenic variants led to significant neuronal loss. Integrative transcriptomic and immunofluorescence analyses revealed that Eftud2 deficiency triggers apoptotic pathways, contributing to cortical malformations. Mechanistic studies using RNA co-immunoprecipitation and full-length transcriptome sequencing demonstrated that Eftud2 directly interacts with Caspase3 and Aifm1 transcripts, regulating their alternative splicing to generate pro-apoptotic isoforms. Splicing assays functionally validated this regulatory mechanism, showing its role in activating cell death pathways and disrupting neurodevelopmental homeostasis. These findings elucidate EFTUD2's critical role in maintaining apoptotic balance during corticogenesis and identify defective splicing regulation as the molecular basis of MFDM. This study provides insights for advancing diagnostic frameworks and therapeutic strategies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yan Yu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Mingze Cai
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Minghe Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiageng Guo
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huailin Wang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
2
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
3
|
Beauchamp MC, Jerome-Majewska LA. A protective role for EFTUD2 in the brain. Neuron 2024; 112:3378-3380. [PMID: 39447540 DOI: 10.1016/j.neuron.2024.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
In this issue of Neuron, Yang et al.1 report MFDM-like phenotypes in mice with deletion of Eftud2 in their Purkinje cells (PCs), namely cerebellar atrophy alongside motor and social deficits, similar to phenotypes observed in MFDM patients. The absence of Eftud2 caused mis-splicing of Atf4, reduced Scd1 and Gch1, and promoted ferroptosis-regulated PC death.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|