1
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Fernández-Rodríguez S, Esposito-Zapero C, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals (Basel) 2021; 14:ph14060593. [PMID: 34203104 PMCID: PMC8233914 DOI: 10.3390/ph14060593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper, we set out to assess both the potential involvement of the glutamate metabotropic receptors (mGluR) in the possible dual effect of NAC administered at two different doses and NAC's effect on ethanol-induced activation. To this aim, 30 or 120 mg/kg of NAC was intraperitoneally administered to rats with the presence or absence of the negative allosteric modulator of mGluR5 (MTEP 0.1 mg/kg). Thereafter, the cFOS IR-cell expression was analyzed. Secondly, we explored the effect of 120 mg/kg of NAC on the neurochemical and behavioral activation induced by intra-VTA ethanol administration (150 nmol). Our results showed that the high NAC dose stimulated cFOS expression in the NAcc, and that this effect was suppressed in the presence of MTEP, thus suggesting the implication of mGluR5. Additionally, high doses could attenuate the ethanol-induced increase in cFOS-expression in the NAcc, probably due to a phenomenon based on the long-term depression of the MSNs. Additional experiments are required to corroborate our hypothesis.
Collapse
|
3
|
Activation of MORs in the VTA induces changes on cFos expression in different projecting regions: Effect of inflammatory pain. Neurochem Int 2019; 131:104521. [DOI: 10.1016/j.neuint.2019.104521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022]
|
4
|
Epigenetic Regulation of Hippocampal Fosb Expression Controls Behavioral Responses to Cocaine. J Neurosci 2019; 39:8305-8314. [PMID: 31477569 DOI: 10.1523/jneurosci.0800-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023] Open
Abstract
Drug addiction results in part from maladaptive learning, including the formation of strong associations between the drug and the circumstances of consumption. However, drug-induced changes in gene expression underlying the saliency of these associations remain understudied. Consolidation of explicit memories occurs within the hippocampus, and we have shown that spatial learning induces expression of the transcription factor ΔFosB in hippocampus and that this induction is critical for learning. Drugs of abuse also upregulate ΔFosB in hippocampus, but the mechanism of its induction by cocaine and its role in hippocampus-dependent cocaine responses is unknown. We investigated differences in mouse dorsal and ventral hippocampal ΔFosB expression in response to chronic cocaine, because these regions appear to regulate distinct cocaine-related behaviors. We found that cocaine-mediated induction of ΔFosB was subregion-specific, and that ΔFosB transcriptional activity in both the dorsal and ventral hippocampus is necessary for cocaine conditioned place preference. Further, we characterize changes in histone modifications at the FosB promoter in hippocampus in response to chronic cocaine and found that locus-specific epigenetic modification is essential for FosB induction and multiple hippocampus-dependent behaviors, including cocaine place preference. Collectively, these findings suggest that exposure to cocaine induces histone modification at the hippocampal FosB gene promoter to cause ΔFosB induction critical for cocaine-related learning.SIGNIFICANCE STATEMENT Although cocaine addiction is driven in part by the formation of indelible associations between the drug and the environment, paraphernalia, and circumstances of use, and although this type of associative learning is dependent upon changes in gene expression in a brain region called the hippocampus, the mechanisms by which cocaine alters hippocampal gene expression to drive formation of these associations is poorly understood. Here, we demonstrate that chronic cocaine engages locus-specific changes in the epigenetic profile of the FosB gene in the hippocampus, and that these alterations are required for cocaine-dependent gene expression and cocaine-environment associations. This work provides novel insight into addiction etiology and potential inroads for therapeutic intervention in cocaine addiction.
Collapse
|
5
|
Kang E, Wen Z, Song H, Christian KM, Ming GL. Adult Neurogenesis and Psychiatric Disorders. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a019026. [PMID: 26801682 DOI: 10.1101/cshperspect.a019026] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric disorders continue to be among the most challenging disorders to diagnose and treat because there is no single genetic or anatomical locus that is causative for the disease. Current treatments are often blunt tools used to ameliorate the most severe symptoms, at the risk of disrupting functional neural systems. There is a critical need to develop new therapeutic strategies that can target circumscribed functional or anatomical domains of pathology. Adult hippocampal neurogenesis may be one such domain. Here, we review the evidence suggesting that adult hippocampal neurogenesis plays a role in emotional regulation and forms of learning and memory that include temporal and spatial memory encoding and context discrimination, and that its dysregulation is associated with psychiatric disorders, such as affective disorders, schizophrenia, and drug addiction. Further, adult neurogenesis has proven to be an effective model to investigate basic processes of neuronal development and converging evidence suggests that aberrant neural development may be an etiological factor, even in late-onset diseases. Constitutive neurogenesis in the hippocampus of the mature brain reflects large-scale plasticity unique to this region and could be a potential hub for modulation of a subset of cognitive and affective behaviors that are affected by multiple psychiatric disorders.
Collapse
Affiliation(s)
- Eunchai Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Barr JL, Forster GL, Unterwald EM. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression. J Neurochem 2014; 130:583-90. [PMID: 24832868 DOI: 10.1111/jnc.12764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 01/09/2023]
Abstract
Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
7
|
Nazari-Serenjeh F, Rezayof A, Zarrindast MR. Functional correlation between GABAergic and dopaminergic systems of dorsal hippocampus and ventral tegmental area in passive avoidance learning in rats. Neuroscience 2011; 196:104-14. [PMID: 21925239 DOI: 10.1016/j.neuroscience.2011.08.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to investigate the existence of possible functional correlation between GABA-A and dopamine (DA) receptors of the dorsal hippocampus and the ventral tegmental area (VTA) in passive avoidance learning. Two guide cannulas were stereotaxically implanted in the CA1 region of the dorsal hippocampus and the VTA of male Wistar rats. In order to measure memory retrieval, the animals were trained in a step-through type passive avoidance task and tested 24 h after training. Post-training intra-CA1 administration of a GABA-A receptor agonist, muscimol (0.01-0.02 μg/rat) dose-dependently impaired memory retrieval. Post-training intra-VTA administration of SCH23390 (a dopamine D1 receptor antagonist; 0.1-0.8 μg/rat) or sulpiride (a D2 receptor antagonist; 0.5-1.5 μg/rat) decreased the inhibitory effect of muscimol (0.02 μg/rat, intra-CA1) on memory retrieval. Intra-VTA administration of the same doses of SCH23390, but not sulpiride, decreased the step-through latencies. On the other hand, post-training administration of muscimol (0.02 μg/rat) into the VTA inhibited memory retrieval. The administration of SCH23390 (0.01-0.2 μg/rat) or sulpiride (0.1-1 μg/rat) into the CA1 region, immediately after training, had no effect on memory retrieval. Furthermore, the amnesic effect of intra-VTA administration of muscimol was significantly decreased by intra-CA1 administration of sulpiride (0.5 and 1 μg/rat, intra-CA1), but not SCH23390. The practical conclusion is that the relationship between the hippocampus and the VTA may regulate memory formation in passive avoidance learning. Also, the correlation between the hippocampus and VTA by a dopaminergic system may be involved in mediating muscimol-induced amnesia.
Collapse
Affiliation(s)
- F Nazari-Serenjeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
8
|
Liu F, Jiang H, Zhong W, Wu X, Luo J. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice. Neuroscience 2010; 171:747-59. [PMID: 20888400 DOI: 10.1016/j.neuroscience.2010.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/08/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
Abstract
The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.
Collapse
Affiliation(s)
- F Liu
- Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of Medicine, 388 Yu Hang Tang Road, Hangzhou 310058, PR China
| | | | | | | | | |
Collapse
|
9
|
Brain Activation by Peptide Pro-Leu-Gly-NH(2) (MIF-1). INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20721355 PMCID: PMC2915805 DOI: 10.1155/2010/537639] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/18/2022]
Abstract
MIF-1 (Pro-Leu-Gly-NH(2)) is a tripeptide for which the therapeutic potential in Parkinson's disease and depression has been indicated by many studies. However, the cellular mechanisms of action of MIF-1 are not yet clear. Here, we show the specific brain regions responsive to MIF-1 treatment by c-Fos mapping, and determine the kinetics of cellular signaling by western blotting of pERK, pSTAT3, and c-Fos in cultured neurons. The immunoreactivity of c-Fos was increased 4 hours after MIF-1 treatment in brain regions critically involved in the regulation of mood, anxiety, depression, and memory. The number of cells activated was greater after peripheral treatment (intravenous delivery) than after intracerebroventricular injection. In cultured SH-SY5Y neuronal cells, c-Fos was induced time- and dose-dependently. The activation of cellular c-Fos was preceded by a transient increase of mitogen-activated protein kinase pERK but a reduction of phosphorylated Signal Transducer and Activator of Transcription (pSTAT3) initially. We conclude that MIF-1 can modulate multiple cellular signals including pERK, and pSTAT3 to activate c-Fos. The cellular activation in specific brain regions illustrates the biochemical and neuroanatomical basis underlying the therapeutic effect of MIF-1 in Parkinson's disease and depression.
Collapse
|
10
|
Ricoy UM, Martinez JL. Local hippocampal methamphetamine-induced reinforcement. Front Behav Neurosci 2009; 3:47. [PMID: 19949457 PMCID: PMC2783399 DOI: 10.3389/neuro.08.047.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/29/2009] [Indexed: 11/13/2022] Open
Abstract
Drug abuse and addiction are major problems in the United States. In particular methamphetamine (METH) use has increased dramatically. A greater understanding of how METH acts on the brain to induce addiction may lead to better therapeutic targets for this problem. The hippocampus is recognized as an important structure in learning and memory, but is not typically associated with drug reinforcement or reward processes. Here, the focus is on the hippocampus which has been largely ignored in the addiction literature as compared to the nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC). The results show that METH administered unilaterally via a microdialysis probe to rats’ right dorsal hippocampus will induce drug-seeking (place preference) and drug-taking (lever-pressing) behavior. Furthermore, both of these responses are dependent on local dopamine (DA) receptor activation, as they are impaired by a selective D1/D5 receptor antagonist. The results suggest that the hippocampus is part of the brain's reward circuit that underlies addiction.
Collapse
Affiliation(s)
- Ulises M Ricoy
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA.
| | | |
Collapse
|
11
|
Hornyak M, Ahrendts JC, Spiegelhalder K, Riemann D, Voderholzer U, Feige B, van Elst LT. Voxel-based morphometry in unmedicated patients with restless legs syndrome. Sleep Med 2007; 9:22-6. [PMID: 17512782 DOI: 10.1016/j.sleep.2006.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/12/2006] [Accepted: 09/21/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND The pathophysiology of restless legs syndrome (RLS) is not yet understood. A prior voxel-based morphometry (VBM) study reported gray matter increase in the pulvinar of the thalamus in a group of patients, most of whom were on medical treatment. Since there is evidence that medication can change the volume of cerebral structures, the question arises as to whether the reported morphometric alterations are caused by the RLS itself or, alternatively, are a consequence of drug treatment. To address this issue, we performed VBM in unmedicated RLS patients. METHODS Fourteen patients with idiopathic RLS with no (n=11) or only minimal (n=3) treatment exposure in the past and 14 age- and sex-matched healthy subjects were investigated. All subjects were free of psychotropic drugs for at least 4 months. Morphological data were analyzed by using optimized VBM. RESULTS We did not detect any structural changes except for slightly increased gray matter density in the ventral hippocampus (p=0.046 on the left and p=0.055 on the right side) and in the middle orbitofrontal gyrus (p=0.046 on the right and p=0.097 on the left side). CONCLUSION Our study could not confirm the findings of a prior study. A possible explanation for the divergent findings is the difference between the populations examined. Since, in our study, essentially treatment-naïve patients were investigated, it is possible that the prior findings reflect treatment-induced effects on cerebral morphology in RLS.
Collapse
Affiliation(s)
- Magdolna Hornyak
- Center for Sleep Research and Sleep Medicine, Department of Psychiatry and Psychotherapy, University Hospital, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ben-Shachar D, Karry R. Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS One 2007; 2:e817. [PMID: 17786189 PMCID: PMC1950689 DOI: 10.1371/journal.pone.0000817] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/03/2007] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. METHODOLOGY/PRINCIPAL FINDINGS mRNA of Sp1 and of mitochondrial complex I subunits (NDUFV1, NDUFV2) was analyzed in three postmortem brain regions obtained from the Stanley Foundation Brain Collection, and in lymphocytes of schizophrenic patients and controls. Sp1 role in the transcription of these genes was studied as well. Sp1 was abnormally expressed in schizophrenia in both brain and periphery. Its mRNA alteration pattern paralleled that of NDUFV1 and NDUFV2, decreasing in the prefrontal cortex and the striatum, while increasing in the parieto-occipital cortex and in lymphocytes of schizophrenic patients as compared with controls. Moreover, a high and significant correlation between these genes existed in normal subjects, but was distorted in patients. Sp1 role in the regulation of complex I subunits, was demonstrated by the ability of the Sp1/DNA binding inhibitor, mithramycin, to inhibit the transcription of NDUFV1 and NDUFV2, in neuroblastoma cells. In addition, Sp1 activated NDUFV2 promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin. CONCLUSIONS/SIGNIFICANCE These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
13
|
Peleg-Raibstein D, Feldon J. Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology 2006; 51:947-57. [PMID: 16876207 DOI: 10.1016/j.neuropharm.2006.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/18/2006] [Accepted: 06/02/2006] [Indexed: 11/29/2022]
Abstract
This study has analysed the effects of infusing N-methyl-D-aspartate (NMDA) into either the ventral or dorsal hippocampus on dopamine (DA) transmission in the nucleus accumbens (NAC) core or shell for the first time. Dopamine was measured using in vivo microdialysis with high performance liquid chromatography with electrochemical detection (HPLC-EC). Unilateral NMDA infusion (0.5 microg) into the ventral hippocampus (VH) increased extracellular DA levels in NAC shell during the first 30 min following infusion compared to saline (SAL) infused animals. In contrast, NAC core DA levels were unaffected. NMDA infusion into the dorsal hippocampus (DH) led to a decrease in NAC core DA levels; this effect was not observed in the SAL-infused group. DA levels in NAC shell remained unaltered. At the end of the experiments, we examined the response to a systemic amphetamine (AMPH) injection of 1mg/kg on extracellular DA levels of the NAC core and shell. Interestingly, on2ly animals previously infused with NMDA into the VH exhibited a sensitized DA response in the NAC shell in response to the AMPH injection. We can conclude that VH activation has an acute stimulatory effect on DA release in the shell and that DH activation has a suppressive effect on extracellular DA levels in the core.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology (ETH Zurich), Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | |
Collapse
|
14
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|