1
|
The Cannabinoid CB 1 Receptor in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:646-659. [PMID: 33077399 DOI: 10.1016/j.bpsc.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Converging lines of evidence from epidemiological, preclinical, and experimental studies indicate that the endocannabinoid system may be involved in the pathophysiology of schizophrenia and suggest that the cannabinoid CB1 receptor may be a potential therapeutic target. In view of this, we first provide an overview of the endocannabinoid system and systematically review the evidence for CB1 receptor alterations in animal models of schizophrenia and clinical studies in schizophrenia. MEDLINE, EMBASE, PsycArticles, and PsycINFO were systematically searched from inception until January 7, 2020. Of 1187 articles, 24 were included in the systematic review, including 8 preclinical studies measuring the CB1 receptor in the context of an established animal model of schizophrenia and 16 clinical studies investigating the CB1 receptor in schizophrenia. The majority of preclinical studies (6 of 8) have shown that the CB1 receptor is reduced in the context of animal models of schizophrenia. Moreover, the majority of in vivo clinical imaging studies that used arterial blood sampling to quantify the radiotracer kinetics (3 of 4) have shown reduced CB1 receptor availability in schizophrenia. However, mixed findings have been reported in ex vivo literature, including reports of no change in receptor levels (5 of 11), increased receptor levels (4 of 11), and decreased receptor levels (2 of 11). We review methodological reasons for these discrepancies and review how CB1 receptor dysfunction may contribute to the pathophysiology of schizophrenia, drawing on the role of the receptor in regulating synaptic transmission and synaptic plasticity. We also discuss how the CB1 receptor may be a potential therapeutic target.
Collapse
|
2
|
Li N, Cao T, Wu X, Tang M, Xiang D, Cai H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front Pharmacol 2020; 10:1669. [PMID: 32116676 PMCID: PMC7011106 DOI: 10.3389/fphar.2019.01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic side effects such as weight gain and disturbed lipid metabolism are often observed in the treatment of atypical antipsychotic drugs (AAPDs), which contribute to an excessive prevalence of metabolic syndrome among schizophrenic patients. Great individual differences are observed but the underlying mechanisms are still uncertain. Research on pharmacogenomics indicates that gene polymorphisms involved in the pathways controlling food intake and lipid metabolism may play a significant role. In this review, relevant genes (HTR2C, DRD2, LEP, NPY, MC4R, BDNF, MC4R, CNR1, INSIG2, ADRA2A) and genetic polymorphisms related to metabolic side effects of AAPDs especially dyslipidemia were summarized. Apart from clinical studies, in vitro and in vivo evidence is also analyzed to support related theories. The association of central and peripheral mechanisms is emphasized, enabling the possibility of using peripheral gene expression to predict the central status. Novel methodological development of pharmacogenomics is in urgent need, so as to provide references for individualized medication and further to shed some light on the mechanisms underlying AAPD-induced lipid disturbances.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
3
|
Borgan F, Laurikainen H, Veronese M, Marques TR, Haaparanta-Solin M, Solin O, Dahoun T, Rogdaki M, Salokangas RKR, Karukivi M, Di Forti M, Turkheimer F, Hietala J, Howes O. In Vivo Availability of Cannabinoid 1 Receptor Levels in Patients With First-Episode Psychosis. JAMA Psychiatry 2019; 76:1074-1084. [PMID: 31268519 PMCID: PMC6613300 DOI: 10.1001/jamapsychiatry.2019.1427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Experimental and epidemiological studies implicate the cannabinoid 1 receptor (CB1R) in the pathophysiology of psychosis. However, whether CB1R levels are altered in the early stages of psychosis and whether they are linked to cognitive function or symptom severity remain unknown. OBJECTIVE To investigate CB1R availability in first-episode psychosis (FEP) without the confounds of illness chronicity or the use of illicit substances or antipsychotics. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional, case-control study of 2 independent samples included participants receiving psychiatric early intervention services at 2 independent centers in Turku, Finland (study 1) and London, United Kingdom (study 2). Study 1 consisted of 18 volunteers, including 7 patients with affective or nonaffective psychoses taking antipsychotic medication and 11 matched controls; study 2, 40 volunteers, including 20 antipsychotic-naive or antipsychotic-free patients with schizophrenia or schizoaffective disorder and 20 matched controls. Data were collected from January 5, 2015, through September 26, 2018, and analyzed from June 20, 2016, through February 12, 2019. MAIN OUTCOMES AND MEASURES The availability of CB1R was indexed using the distribution volume (VT, in milliliters per cubic centimeter) of 2 CB1R-selective positron emission tomography radiotracers: fluoride 18-labeled FMPEP-d2 (study 1) and carbon 11-labeled MePPEP (study 2). Cognitive function was measured using the Wechsler Digit Symbol Coding Test. Symptom severity was measured using the Brief Psychiatric Rating Scale for study 1 and the Positive and Negative Syndrome Scale for study 2. RESULTS A total of 58 male individuals were included in the analyses (mean [SD] age of controls, 27.16 [5.93] years; mean [SD] age of patients, 26.96 [4.55] years). In study 1, 7 male patients with FEP (mean [SD] age, 26.80 [5.40] years) were compared with 11 matched controls (mean [SD] age, 27.18 [5.86] years); in study 2, 20 male patients with FEP (mean [SD] age, 27.00 [5.06] years) were compared with 20 matched controls (mean [SD] age, 27.15 [6.12] years). In study 1, a significant main effect of group on [18F]FMPEP-d2 VT was found in the anterior cingulate cortex (ACC) (t16 = -4.48; P < .001; Hedges g = 1.2), hippocampus (t16 = -2.98; P = .006; Hedges g = 1.4), striatum (t16 = -4.08; P = .001; Hedges g = 1.9), and thalamus (t16 = -4.67; P < .001; Hedges g = 1.4). In study 2, a significant main effect of group on [11C]MePPEP VT was found in the ACC (Hedges g = 0.8), hippocampus (Hedges g = 0.5), striatum (Hedges g = 0.4), and thalamus (Hedges g = 0.7). In patients, [11C]MePPEP VT in the ACC was positively associated with cognitive functioning (R = 0.60; P = .01), and [11C]MePPEP VT in the hippocampus was inversely associated with Positive and Negative Syndrome Scale total symptom severity (R = -0.50; P = .02). CONCLUSIONS AND RELEVANCE The availability of CB1R was lower in antipsychotic-treated and untreated cohorts relative to matched controls. Exploratory analyses indicated that greater reductions in CB1R levels were associated with greater symptom severity and poorer cognitive functioning in male patients. These findings suggest that CB1R may be a potential target for the treatment of psychotic disorders.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Heikki Laurikainen
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Merja Haaparanta-Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Raimo KR Salokangas
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Max Karukivi
- Department of Psychiatry, Turku University, Satakunta Hospital District, Turku, Finland
| | - Marta Di Forti
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jarmo Hietala
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
4
|
Modulation of the endocannabinoid system by sex hormones: Implications for posttraumatic stress disorder. Neurosci Biobehav Rev 2018; 94:302-320. [DOI: 10.1016/j.neubiorev.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
5
|
Lian J, Deng C. The effects of antipsychotics on the density of cannabinoid receptors in selected brain regions of male and female adolescent juvenile rats. Psychiatry Res 2018; 266:317-322. [PMID: 29576413 DOI: 10.1016/j.psychres.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/05/2018] [Accepted: 03/08/2018] [Indexed: 01/16/2023]
Abstract
Antipsychotic drugs have been increasingly prescribed to children and adolescents for treating various mental disorders, such as childhood-onset schizophrenia. The abnormality of endocannabinoid system is involved in the pathophysiology of these disorders in juveniles. This study investigated the effect of antipsychotics on the cannabinoid (CB) receptors in the brain of both male and female juvenile rats. The postnatal rats (PD23±1) were administered aripiprazole (1 mg/kg), olanzapine (1 mg/kg), risperidone (0.3 mg/kg) or vehicle (control) for 3 weeks. Quantitative autoradiography was used to investigate the binding densities of [3H]CP-55940 (an agonist for CB1R and CB2R) and [3H]SR141716A (a selective CB1R antagonist) in the rat brains. Risperidone significantly upregulated the [3H]CP55940 and [3H]SR141716A bindings in the prefrontal cortex (PFC), nucleus accumbens core (NAcC), nucleus accumbens shell (NAcS), cingulate cortex (Cg), and the caudate putamen (CPu) in male rats. Moreover, aripiprazole significantly elevated the [3H]SR141716A binding in the Cg and NAcS of female rats. Furthermore, there is an overall higher [3H]SR141716A binding level in the brain of female rats than male rats. Therefore, treatment with aripiprazole, olanzapine and risperidone could induce differential and gender specific effects on the binding density of cannabinoid receptors in the selected brain regions of childhood/adolescent rats.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
6
|
Delis F, Rosko L, Shroff A, Leonard KE, Thanos PK. Oral haloperidol or olanzapine intake produces distinct and region-specific increase in cannabinoid receptor levels that is prevented by high fat diet. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:268-280. [PMID: 28619471 DOI: 10.1016/j.pnpbp.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Clinical studies show higher levels of cannabinoid CB1 receptors (CB1R) in the brain of schizophrenic patients while preclinical studies report a significant functional interaction between dopamine D2 receptors and CB1Rs as well as an upregulation of CB1Rs after antipsychotic treatment. These findings prompted us to study the effects of chronic oral intake of a first and a second generation antipsychotic, haloperidol and olanzapine, on the levels and distribution of CB1Rs in the rat brain. Rats consumed either regular chow or high-fat food and drank water, haloperidol drinking solution (1.5mg/kg), or olanzapine drinking solution (10mg/kg) for four weeks. Motor and cognitive functions were tested at the end of treatment week 3 and upon drug discontinuation. Two days after drug discontinuation, rats were euthanized and brains were processed for in vitro receptor autoradiography. In chow-fed animals, haloperidol and olanzapine increased CB1R levels in the basal ganglia and the hippocampus, in a similar, but not identical pattern. In addition, olanzapine had unique effects in CB1R upregulation in higher order cognitive areas, in the secondary somatosensory cortex, in the visual and auditory cortices and the geniculate nuclei, as well as in the hypothalamus. High fat food consumption prevented antipsychotic-induced increase in CB1R levels in all regions examined, with one exception, the globus pallidus, in which they were higher in haloperidol-treated rats. The results point towards the hypothesis that increased CB1R levels could be a confounding effect of antipsychotic medication in schizophrenia that is circumveneted by high fat feeding.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Lauren Rosko
- Georgetown University Medical Center, Georgetown University, Washington, DC, 20007, USA
| | - Aditya Shroff
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kenneth E Leonard
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Szűcs E, Dvorácskó S, Tömböly C, Büki A, Kékesi G, Horváth G, Benyhe S. Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia. Neurosci Lett 2016; 633:87-93. [PMID: 27639959 DOI: 10.1016/j.neulet.2016.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a serious mental health disorder characterized by several behavioral and biochemicel abnormalities. In a previous study we have shown that mu-opioid (MOP) receptor signaling is impaired in specific brain regions of our three-hit animal model of schizophrenia. Since the cannabinoid system is significantly influenced in schizophrenic patients, in the present work we investigated cannabinoid (CB) receptor binding and G-protein activation in cortical, subcortical and cerebellar regions of control and 'schizophrenic' rats. Cannabinoid agonist (WIN-55,212-2 mesylate) mediated G-protein activation was consistently decreased in all areas tested, and the difference was extremely significant in membranes prepared from the cerebellum. Interestingly, the cerebellar activity of WIN-55,212-2 stimulated G-proteins was substantially higher than those of cerebral cortex and subcortical region in control animals, indicating a primordial role of the cannabinoid system in the cerebellum. At the level of radioligand binding, the affinities of the CB receptors were also markedly decreased in the model animals. Capacity of the [3H]WIN-55,212-2 binding was only higher in the cerebellum of 'schizophrenic' model rats. Taken together, in all three brain areas of model rats both cannabinoid receptor binding and cannabinoid agonist-mediated G-protein activation were regularly decreased. Our results revealed that besides the opioids, the endocannabinoid - cannabis receptor system also shows impairment in our rat model, increasing its face validity and translational utility.
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1)
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1)
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1)
| | - Alexandra Büki
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1).
| |
Collapse
|
8
|
Abstract
UNLABELLED The possibility that mechanisms of synaptic modulation differ between males and females has far-reaching implications for understanding brain disorders that vary between the sexes. We found recently that 17β-estradiol (E2) acutely suppresses GABAergic inhibition in the hippocampus of female rats through a sex-specific estrogen receptor α (ERα), mGluR, and endocannabinoid-dependent mechanism. Here, we define the intracellular signaling that links ERα, mGluRs, and endocannabinoids in females and identify where in this pathway males and females differ. Using a combination of whole-cell patch-clamp recording and biochemical analyses in hippocampal slices from young adult rats, we show that E2 acutely suppresses inhibition in females through mGluR1 stimulation of phospholipase C, leading to inositol triphosphate (IP3) generation, activation of the IP3 receptor (IP3R), and postsynaptic endocannabinoid release, likely of anandamide. Analysis of sex differences in this pathway showed that E2 stimulates a much greater increase in IP3 levels in females than males, whereas the group I mGluR agonist DHPG increases IP3 levels equivalently in each sex. Coimmunoprecipitation showed that ERα-mGluR1 and mGluR1-IP3R complexes exist in both sexes but are regulated by E2 only in females. Independently of E2, a fatty acid amide hydrolase inhibitor, which blocks breakdown of anandamide, suppressed >50% of inhibitory synapses in females with no effect in males, indicating tonic endocannabinoid release in females that is absent in males. Together, these studies demonstrate sex differences in both E2-dependent and E2-independent regulation of the endocannabinoid system and suggest that manipulation of endocannabinoids in vivo could affect physiological and behavioral responses differently in each sex. SIGNIFICANCE STATEMENT Many brain disorders vary between the sexes, yet the degree to which this variation arises from differential experience versus intrinsic biological sex differences is unclear. In this study, we demonstrate intrinsic sex differences in molecular regulation of a key neuromodulatory system, the endocannabinoid system, in the hippocampus. Endocannabinoids are involved in diverse aspects of physiology and behavior that involve the hippocampus, including cognitive and motivational state, responses to stress, and neurological disorders such as epilepsy. Our finding that molecular regulation of the endocannabinoid system differs between the sexes suggests mechanisms through which experiences or therapeutics that engage endocannabinoids could affect males and females differently.
Collapse
|
9
|
Erdozain AM, Rubio M, Meana JJ, Fernández-Ruiz J, Callado LF. Altered CB1 receptor coupling to G-proteins in the post-mortem caudate nucleus and cerebellum of alcoholic subjects. J Psychopharmacol 2015; 29:1137-45. [PMID: 26253623 DOI: 10.1177/0269881115599388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biochemical, pharmacological and genetic evidence suggests the involvement of the endocannabinoid system in alcohol dependence. The aim of the present study was to evaluate the state of CB1 receptors in post-mortem caudate nucleus, hippocampus and cerebellum of alcoholic subjects.CB1 protein levels were measured by Western blot, CB1 receptor density and affinity by [(3)H]WIN55,212-2 saturation assays and CB1 functionality by [(35)S]GTPγS binding assays. Experiments were performed in samples from 24 subjects classified as non-suicidal alcoholics (n = 6), suicidal alcoholics (n = 6), non-alcoholic suicide victims (n = 6) and control subjects (n = 6).Alcoholic subjects presented hyperfunctional CB1 receptors in the caudate nucleus resulting in a higher maximal effect in both alcoholic groups compared to the non-alcoholic groups (p < 0.001). Conversely, in the cerebellum the non-suicidal alcoholic subjects showed hypofunctional receptors with lower maximal effect and potency (p < 0.001). No changes were found in the CB1 protein expression in either region. In the hippocampus of alcoholic subjects, no changes were observed either in the functionality, density or protein levels.Our data support an association between endocannabinoid system activity and alcoholism. The modifications reported here could be either a consequence of high lifetime ethanol consumption or a vulnerability factor to develop alcohol addiction.
Collapse
Affiliation(s)
- Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country UPV/EHU, Bizkaia, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain Current address: Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Université Pierre et Marie Curie, Paris, France
| | - Marina Rubio
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Bizkaia, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain Biocruces Health Research Institute, Bizkaia, Spain
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, Bizkaia, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain Biocruces Health Research Institute, Bizkaia, Spain
| |
Collapse
|
10
|
Erdozain AM, Rubio M, Valdizan EM, Pazos A, Meana JJ, Fernández-Ruiz J, Alexander SPH, Callado LF. The endocannabinoid system is altered in the post-mortem prefrontal cortex of alcoholic subjects. Addict Biol 2015; 20:773-83. [PMID: 25041461 DOI: 10.1111/adb.12160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is strong biochemical, pharmacological and genetic evidence for the involvement of the endocannabinoid system (ECS) in alcohol dependence. However, the majority of studies have been performed in animal models. The aim of the present study was to assess the state of the CB1 receptor, the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and the extracellular signal-regulated kinase (ERK) and cyclic-AMP response element-binding protein (CREB) in the post-mortem prefrontal cortex of alcoholic subjects. Experiments were performed in samples from 44 subjects classified in four experimental groups: (1) non-suicidal alcoholic subjects (n = 11); (2) suicidal alcoholic subjects (n = 11); (3) non-alcoholic suicide victims (n = 11); and (4) control subjects (n = 11). We did not observe statistically significant differences in CB1 mRNA relative expression among the four experimental groups. Conversely, our results showed an increase in CB1 receptor protein expression in the prefrontal cortex of the suicidal alcoholic group (127.2 ± 7.3%), with no changes in functionality with regard to either G protein activation or the inhibition of adenylyl cyclase. In parallel, alcoholic subjects presented lower levels of MAGL activity, regardless of the cause of death. A significant decrease in the active form of ERK and CREB levels was also observed in both alcoholic groups. Taken together, our data are consistent with a role for the ECS in the neurobiological mechanisms underlying alcoholism. Moreover, the alterations reported here should be of great interest for the therapeutic treatment of this chronic psychiatric disease.
Collapse
Affiliation(s)
- Amaia M. Erdozain
- Department of Pharmacology; University of the Basque Country UPV/EHU; Bizkaia Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
| | - Marina Rubio
- Department of Biochemistry and Molecular Biology; Faculty of Medicine; Complutense University; Madrid Spain
| | - Elsa M. Valdizan
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- Department of Physiology and Pharmacology; Institute of Biomedicine and Biotechnology IBBTEC (Universidad de Cantabria-CSIC-IDICAN) Santander; Cantabria Spain
| | - Angel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- Department of Physiology and Pharmacology; Institute of Biomedicine and Biotechnology IBBTEC (Universidad de Cantabria-CSIC-IDICAN) Santander; Cantabria Spain
| | - J Javier Meana
- Department of Pharmacology; University of the Basque Country UPV/EHU; Bizkaia Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- BioCruces Health Research Institute; Bizkaia Spain
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology; Faculty of Medicine; Complutense University; Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS); Madrid Spain
| | | | - Luis F. Callado
- Department of Pharmacology; University of the Basque Country UPV/EHU; Bizkaia Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- BioCruces Health Research Institute; Bizkaia Spain
| |
Collapse
|
11
|
Laprairie RB, Bagher AM, Precious SV, Denovan-Wright EM. Components of the endocannabinoid and dopamine systems are dysregulated in Huntington's disease: analysis of publicly available microarray datasets. Pharmacol Res Perspect 2015; 3:e00104. [PMID: 25692022 PMCID: PMC4317235 DOI: 10.1002/prp2.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/20/2014] [Accepted: 09/28/2014] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington's disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated. The purpose of this study was to determine the changes that were consistently observed in the ECS and DAS during HD progression in the central nervous system (CNS) and in the periphery in different models of HD and human HD tissue. To do this, we conducted a meta-analysis of differential gene expression in the ECS and DAS using publicly available microarray data. The consolidated data were summarized as observed changes in gene expression (OCGE) using a weighted sum for each gene. In addition, consolidated data were compared to previously published studies that were not available in the gene expression omnibus (GEO) database. The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage- and tissue-specific transcriptional dysregulation in HD. The major implication of the systems-wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems.
Collapse
Affiliation(s)
- Robert B Laprairie
- Department of Pharmacology, Dalhousie UniversityHalifax, NS, Canada, B3H 4R2
| | - Amina M Bagher
- Department of Pharmacology, Dalhousie UniversityHalifax, NS, Canada, B3H 4R2
| | - Sophie V Precious
- Department of Pharmacology, Dalhousie UniversityHalifax, NS, Canada, B3H 4R2
| | | |
Collapse
|
12
|
Wakley AA, McBride AA, Vaughn LK, Craft RM. Cyclic ovarian hormone modulation of supraspinal Δ9-tetrahydrocannabinol-induced antinociception and cannabinoid receptor binding in the female rat. Pharmacol Biochem Behav 2014; 124:269-77. [DOI: 10.1016/j.pbb.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
13
|
Abstract
Cannabis is a known risk factor for schizophrenia, although the exact neurobiological process through which the effects on psychosis occur is not well-understood. In this review, we attempt to develop and discuss a possible pathway for the development of psychosis. We examine the neurobiological changes due to cannabis to see if these changes are similar to those seen in schizophrenic patients the findings show similarities; however, these mere similarities cannot establish a 'cause-effect' relationship as a number of people with similar changes do not develop schizophrenia. Therefore, the 'transition-to-psychosis' due to cannabis, despite being a strong risk factor, remains uncertain based upon neurobiological changes. It appears that other multiple factors might be involved in these processes which are beyond neurobiological factors. Major advances have been made in understanding the underpinning of marijuana dependence, and the role of the cannabinoid system, which is a major area for targeting medications to treat marijuana withdrawal and dependence, as well as other addictions is of now, it is clear that some of the similarities in the neurobiology of cannabis and schizophrenia may indicate a mechanism for the development of psychosis, but its trajectories are undetermined.
Collapse
Affiliation(s)
- Amresh Shrivastava
- Department of Psychiatry, Elgin Early Intervention Program for Psychosis, University of Western Ontario, London, Ontario, Canada ; Mental Health Resource Foundation, Mumbai, Maharashtra, India
| | - Megan Johnston
- Department of Psychology, University of Toronto, St. George, Toronto, Canada
| | - Kristen Terpstra
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Yves Bureau
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Dissanayake DW, Mason R, Marsden CA. Sensory gating, Cannabinoids and Schizophrenia. Neuropharmacology 2013; 67:66-77. [DOI: 10.1016/j.neuropharm.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
|
15
|
Poklis JL, Amira D, Wise LE, Wiebelhaus JM, Haggerty BJ, Lichtman AH, Poklis A. Determination of naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in mouse blood and tissue after inhalation exposure to 'buzz' smoke by HPLC/MS/MS. Biomed Chromatogr 2012; 26:1393-8. [PMID: 22407432 DOI: 10.1002/bmc.2710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 11/11/2022]
Abstract
The disposition of the cannabimimetic naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in mice following inhalation of the smoke of the herbal incense product (HIP) 'Buzz' is presented. A high-pressure liquid chromatography with electrospray ionization triple quadrupole mass spectrometer (HPLC/MS/MS) method was validated for the analysis of JWH-018 in the specimens using deuterated Δ(9) -tetrahydrocannabinol (d(3) -THC) as the internal standard. JWH-018 was isolated by cold acetonitrile liquid-liquid extraction. Chromatographic separation was performed on a Zorbaz eclipse XDB-C(18) column. The assay was linear from 1 to 1000 ng/mL. Six C57BL6 mice were sacrificed 20 min after exposure to the smoke of 200 mg 'Buzz' containing 5.4% JWH-018. Specimen concentrations of JWH-018 were: blood, 54-166 ng/mL (mean 82 ± 42 ng/mL); brain, 316-708 ng/g (mean 510 ± 166 ng/g); and liver, 1370-3220 ng/mL (mean 1990 ± 752 ng/mL). The mean blood to brain ratio for JWH-018 was 6.8 and ranged from 4.2 to 10.9. After exposure, the responses of the mice were consistent with cannabinoid receptor type 1 activity: body temperatures dropped 7.3 ± 1.1 °C, and catalepsy, hyperreflexia, straub tail and ptosis were observed. The brain concentrations and physiological responses are consistent with the hypothesis that the behavioral effects of 'Buzz' are attributable to JWH-018.
Collapse
Affiliation(s)
- Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Llorente-Berzal A, Mela V, Borcel E, Valero M, López-Gallardo M, Viveros MP, Marco EM. Neurobehavioral and metabolic long-term consequences of neonatal maternal deprivation stress and adolescent olanzapine treatment in male and female rats. Neuropharmacology 2012; 62:1332-41. [DOI: 10.1016/j.neuropharm.2011.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 07/09/2011] [Accepted: 07/19/2011] [Indexed: 12/18/2022]
|
17
|
Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex. Neuropsychopharmacology 2011; 36:1620-30. [PMID: 21471953 PMCID: PMC3138655 DOI: 10.1038/npp.2011.43] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of studies suggest a dysregulation of the endogenous cannabinoid system in schizophrenia (SCZ). In the present study, we examined cannabinoid CB(1) receptor (CB(1)R) binding and mRNA expression in the dorsolateral prefrontal cortex (DLPFC) (Brodmann's area 46) of SCZ patients and controls, post-mortem. Receptor density was investigated using autoradiography with the CB(1)R ligand [(3)H] CP 55,940 and CB(1)R mRNA expression was measured using quantitative RT-PCR in a cohort of 16 patients with paranoid SCZ, 21 patients with non-paranoid SCZ and 37 controls matched for age, post-mortem interval and pH. All cases were obtained from the University of Sydney Tissue Resource Centre. Results were analyzed using one-way analysis of variance (ANOVA) and post hoc Bonferroni tests and with analysis of covariance (ANCOVA) to control for demographic factors that would potentially influence CB(1)R expression. There was a main effect of diagnosis on [(3)H] CP 55,940 binding quantified across all layers of the DLPFC (F(2,71) = 3.740, p = 0.029). Post hoc tests indicated that this main effect was due to patients with paranoid SCZ having 22% higher levels of CB(1)R binding compared with the control group. When ANCOVA was employed, this effect was strengthened (F(2,67) = 6.048, p = 0.004) with paranoid SCZ patients differing significantly from the control (p = 0.004) and from the non-paranoid group (p = 0.016). In contrast, no significant differences were observed in mRNA expression between the different disease subtypes and the control group. Our findings confirm the existence of a CB(1)R dysregulation in SCZ and underline the need for further investigation of the role of this receptor particularly in those diagnosed with paranoid SCZ.
Collapse
|
18
|
Park YM, Choi JE, Kang SG, Koo SH, Kim L, Geum D, Lee HJ. Cannabinoid type 1 receptor gene polymorphisms are not associated with olanzapine-induced weight gain. Hum Psychopharmacol 2011; 26:332-7. [PMID: 21695734 DOI: 10.1002/hup.1210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/25/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Olanzapine is an atypical antipsychotic known to cause considerable weight gain. The cannabinoid type 1 receptor has been reported to be involved in energy balance control, appetite stimulation, and increases in body weight. METHODS In the present study, we investigated three polymorphisms (rs1049353, rs806368, and rs4707436) in the cannabinoid type 1 receptor gene (CNR1) and weight gain in Korean patients with schizophrenia receiving olanzapine treatment. Weight and height were measured prior to starting olanzapine and again after long-term treatment in 78 patients with schizophrenia. CNR1 polymorphisms were genotyped using PCR-RFLP methods. RESULTS The three CNR1 polymorphisms were not associated with body weight changes from baseline to the endpoint after olanzapine treatment (p > 0.05). There were also no significant differences in genotype, allele, or haplotype frequencies between the high weight gain (at least 7%) and low weight gain (less than 7%) groups. CONCLUSION Within the limitations imposed by the smallness of the clinical sample, our findings suggest that CNR1 polymorphisms are not associated with olanzapine-induced weight gain.
Collapse
Affiliation(s)
- Young-Min Park
- Department of Psychiatry, Inje University College of Medicine, Goyang, South Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Agrawal A, Nurnberger JI, Lynskey MT. Cannabis involvement in individuals with bipolar disorder. Psychiatry Res 2011; 185:459-61. [PMID: 20674039 PMCID: PMC2976789 DOI: 10.1016/j.psychres.2010.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/25/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
In a study of 471 bipolar disorder (BD) cases and 1761 controls, individuals with BD were 6.8 times more likely to report a lifetime history of cannabis use. Rates of DSM-IV cannabis use disorders in those with BD were 29.4% and were independently and significantly associated with increased suicide attempts, greater likelihood of mixed episodes and greater disability attributable to BD.
Collapse
Affiliation(s)
- Arpana Agrawal
- Dept. of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - John I. Nurnberger
- Indiana University School of Medicine, Institute of Psychiatric Research, Indianapolis, Indiana 46202-2873, United States
| | | | - Michael T. Lynskey
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, Saint Louis, MO 63110, United States
| |
Collapse
|
20
|
Makkos Z, Fejes L, Inczédy-Farkas G, Kassai-Farkas A, Faludi G, Lazary J. Psychopharmacological comparison of schizophrenia spectrum disorder with and without cannabis dependency. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:212-7. [PMID: 21087649 DOI: 10.1016/j.pnpbp.2010.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/02/2010] [Accepted: 11/05/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although incidence of schizophrenia is higher among cannabis users and marijuana is the most common abused drug by adolescents, etiological linkage between schizophrenia and cannabis use is still not clarified. Clinical experiences suggest that regular cannabis user can show similar psychotic episode to schizophrenic disorders but it is still unclear if chronic cannabis use with schizophreniform disorder is a distinct entity requiring special therapy or it can be treated as classical schizophrenia. There are no data available on the comparison of pharmacotherapy between schizophreniform patients with and without cannabis use. METHODS Clinical data of 85 patients with schizophrenia spectrum disorder were analyzed retrospectively. Cannabis use was not reported by 43 persons (Cnbs0 subgroup) and 42 patients used regularly cannabis during at least 1 year (Cnbs1 subgroup). Comparison of anamnesis, family history, social-demographic condition, positive and negative symptoms, acute and long-term therapies recorded by clinical interviews was performed with chi square tests, logistic binary regression and t-tests using SPSS 13.0 for Windows software. RESULTS Men were over-represented in cannabis dependent group while mean age was lower among them compared to Cnbs0 subgroup. Prevalence of suicidal attempt was increased in men without cannabis use (OR = 5.25, p = 0.016). Patients without cannabis use spent more time in hospital (p = 0.026) and smoking was more frequent among them (OR = 1.36, p = 0.047). The chance to get olanzapine for acute therapy and aripiprazol for long term therapy was more than two fold in Cnbs1 subgroup (OR = 2.66, OR = 3.67, respectively). However, aripiprazol was used for acute therapy with significantly lower risk in Cnbs1 subgroup (OR = 0.47, p = 0.023). Olanzapine was administered for long term therapy in a higher dose to Cnbs0 patients (p = 0.040). Also higher dose of risperidon LAI was used in women without cannabis dependency compared to women of Cnbs1 subgroup (p=0.020). Positive and negative symptoms and family history did not differ significantly between the two subgroups. CONCLUSION Although symptom profile was similar, hospitalization time, suicidal anamnesis, smoking habit and also dosage, intensity and lasting of therapy were different between the two subgroups. Further prospective studies are required for the investigation of the clinical and molecular background of this discrepancy in order to determine a relevant protocol of prevention and treatment of the chronic cannabis use related psychotic disorder.
Collapse
Affiliation(s)
- Zoltan Makkos
- 1st Department of Psychiatry, Nyírő Gyula Hospital, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology 2010; 35:2060-71. [PMID: 20555313 PMCID: PMC2967726 DOI: 10.1038/npp.2010.75] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We recently showed that measures of cannabinoid 1 receptor (CB1R) mRNA and protein were significantly reduced in dorsolateral prefrontal cortex (DLPFC) area 9 in schizophrenia subjects relative to matched normal comparison subjects. However, other studies have reported unaltered or higher measures of CB1R levels in schizophrenia. To determine whether these discrepancies reflect differences across brain regions or across subject groups (eg, presence of depression, cannabis exposure, etc), we used immunocytochemical techniques to determine whether lower levels of CB1R immunoreactivity are (1) present in another DLPFC region, area 46, in the same subjects with schizophrenia, (2) present in area 46 in a new cohort of schizophrenia subjects, (3) present in major depressive disorder (MDD) subjects, or (4) attributable to factors other than a diagnosis of schizophrenia, including prior cannabis use. CB1R immunoreactivity levels in area 46 were significantly 19% lower in schizophrenia subjects relative to matched normal comparison subjects, a deficit similar to that observed in area 9 in the same subjects. In a new cohort of subjects, CB1R immunoreactivity levels were significantly 20 and 23% lower in schizophrenia subjects relative to matched comparison and MDD subjects, respectively. The lower levels of CB1R immunoreactivity in schizophrenia subjects were not explained by other factors such as cannabis use, suicide, or pharmacological treatment. In addition, CB1R immunoreactivity levels were not altered in monkeys chronically exposed to haloperidol. Thus, the lower levels of CB1R immunoreactivity may be common in schizophrenia, conserved across DLPFC regions, not present in MDD, and not attributable to other factors, and thus a reflection of the underlying disease process.
Collapse
|
22
|
Sciolino NR, Bortolato M, Eisenstein SA, Fu J, Oveisi F, Hohmann AG, Piomelli D. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 2010; 168:371-86. [PMID: 20394803 PMCID: PMC2882942 DOI: 10.1016/j.neuroscience.2010.04.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 12/22/2022]
Abstract
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced changes in endocannabinoid content (piriform, prefrontal cortices), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Marco Bortolato
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Sarah A. Eisenstein
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Jin Fu
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Fariba Oveisi
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Andrea G. Hohmann
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Daniele Piomelli
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
23
|
Fernandez-Espejo E, Viveros MP, Núñez L, Ellenbroek BA, Rodriguez de Fonseca F. Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology (Berl) 2009; 206:531-49. [PMID: 19629449 DOI: 10.1007/s00213-009-1612-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 07/02/2009] [Indexed: 11/25/2022]
Abstract
RATIONALE Cannabis abuse and endocannabinoids are associated to schizophrenia. OBJECTIVES It is important to discern the association between schizophrenia and exogenous Cannabis sativa, on one hand, and the endogenous cannabinoid system, on the other hand. RESULTS On one hand, there is substantial evidence that cannabis abuse is a risk factor for psychosis in genetically predisposed people, may lead to a worse outcome of the disease, or it can affect normal brain development during adolescence, increasing the risk for schizophrenia in adulthood. Regarding genetic predisposition, alterations affecting the cannabinoid CNR1 gene could be related to schizophrenia. On the other hand, the endogenous cannabinoid system is altered in schizophrenia (i.e., increased density of cannabinoid CB1 receptor binding in corticolimbic regions, enhanced cerebrospinal fluid anandamide levels), and dysregulation of this system can interact with neurotransmitter systems in such a way that a "cannabinoid hypothesis" can be integrated in the neurobiological hypotheses of schizophrenia. Finally, there is also evidence that some genetic alterations of the CNR1 gene can act as a protectant factor against schizophrenia or can induce a better pharmacological response to atypical antipsychotics. CONCLUSIONS Cannabis abuse is a risk factor for psychosis in predisposed people, it can affect neurodevelopment during adolescence leading to schizophrenia, and a dysregulation of the endocannabinoid system can participate in schizophrenia. It is also worth noting that some specific cannabinoid alterations can act as neuroprotectant for schizophrenia or can be a psychopharmacogenetic rather than a vulnerability factor.
Collapse
Affiliation(s)
- Emilio Fernandez-Espejo
- Departamento de Fisiología Médica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| | | | | | | | | |
Collapse
|
24
|
Sánchez-Wandelmer J, Hernández-Pinto AM, Cano S, Dávalos A, de la Peña G, Puebla-Jiménez L, Arilla-Ferreiro E, Lasunción MA, Busto R. Effects of the antipsychotic drug haloperidol on the somastostatinergic system in SH-SY5Y neuroblastoma cells. J Neurochem 2009; 110:631-40. [PMID: 19457089 DOI: 10.1111/j.1471-4159.2009.06159.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antipsychotics are established drugs in schizophrenia treatment which, however, are not free of side effects. Lipid rafts are critical for normal brain function. Several G protein-coupled receptors, such as somatostatin (SRIF) receptors, have been shown to localize to lipid rafts. The aim of this study was to investigate whether haloperidol treatment affects the composition and functionality of lipid rafts in SH-SY5Y neuroblastoma cells. Haloperidol inhibited cholesterol biosynthesis, leading to a marked reduction in cell cholesterol content and to an accumulation of sterol intermediates, particularly cholesta-8,14-dien-3beta-ol. These changes were accompanied by a loss of flotillin-1 and Fyn from the lipid rafts. We next studied the functionality of the SRIF receptor. Treatment with haloperidol reduced the inhibitory effect of SRIF on adenylyl cyclase (AC) activity. On the other side, haloperidol decreased basal AC activity but increased forskolin-stimulated AC activity. Addition of free cholesterol to the culture medium abrogated the effects of haloperidol on lipid raft composition and SRIF signaling whereas the AC response to forskolin remained elevated. The results show that haloperidol, by affecting cholesterol homeostasis, ultimately alters SRIF signaling and AC activity, which might have physiological consequences.
Collapse
|
25
|
Abstract
Humans have used Cannabis sativa (marijuana) for at least 12,000 years, but researchers have only recently described an endogenous cannabinoid system. The endocannabinoid system modulates an array of physiological and psychological functions. Endocannabinoids are widely distributed throughout the body, including the central nervous system (CNS). This article gives a basic overview of endocannabinoid neuroanatomy and function. Several endocannabinoids have been discovered to date, and their roles are being elucidated. Two G-protein coupled cannabinoid receptors, CB1R and CB2R, have been identified, although other candidate receptors exist, including ion channel and nuclear receptors that might be components of the endocannabinoid system. It appears that cannabinoids are dysregulated in a number of psychiatric disorders and might be involved in their pathogenesis. There is now evidence that manipulation of the endocannabinoid system could be a therapeutic target for a variety of conditions.
Collapse
Affiliation(s)
- Chris S Breivogel
- Department of Pharmaceutical Sciences, Campbell University School of Pharmacy, Buies Creek, North Carolina 27506, USA.
| | | |
Collapse
|