1
|
Le Marois M, Tzavara E, Ibrahim EC, Blin O, Belzeaux R. RNA therapeutics for mood disorders: current evidence toward clinical trials. Expert Opin Investig Drugs 2021; 30:721-736. [PMID: 33966550 DOI: 10.1080/13543784.2021.1928073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Mood disorders are severe yet frequent psychiatric disorders worldwide, comprising major depressive disorder (MDD) and bipolar disorders (BD). Their treatment remains poorly effective. Recently, growing evidence for epigenetic mechanisms has emerged. Consequently, a great interest in a novel pharmacological class arose: RNA therapeutics. AREAS COVERED We conducted a systematic review of RNA therapeutics -antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), and micro-RNA (miRNA) therapeutics- for the treatment of mood disorders studied in pre-clinical animal models listed in PubMed, in clinical trials registered in ClinicalTrials.gov and available on the market by combining literature search and Food and Drug Administration and European Medicine Agency online databases. Eighteen pre-clinical studies investigated the antidepressant effects of RNA therapeutics. However, even though there is an increasing number of marketing authorizations and clinical trials for the past twenty years, no RNA therapeutic has reached the clinical development pipeline for the treatment of psychiatric disorders yet. EXPERT OPINION Several promising RNA therapeutics have been tested in pre-clinical studies for MDD, whereas no molecule has been developed for BD. There are several issues to address before reaching clinical development and new challenges include stratifying patient population and predicting therapeutic response.
Collapse
Affiliation(s)
- Marguerite Le Marois
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, Marseille, France.,Aix Marseille Univ, CNRS, Inst Neurosci Timone, Marseille, France
| | - Eleni Tzavara
- Fondation FondaMental, Créteil, France.,Pôle De Psychiatrie, Hôpital Sainte-Marguerite, AP-HM, Marseille, France
| | - El Chérif Ibrahim
- Aix Marseille Univ, CNRS, Inst Neurosci Timone, Marseille, France.,Fondation FondaMental, Créteil, France
| | - Olivier Blin
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, Marseille, France
| | - Raoul Belzeaux
- Aix Marseille Univ, CNRS, Inst Neurosci Timone, Marseille, France.,Fondation FondaMental, Créteil, France.,Pôle De Psychiatrie, Hôpital Sainte-Marguerite, AP-HM, Marseille, France
| |
Collapse
|
2
|
Orem BC, Rajaee A, Stirling DP. IP 3R-mediated intra-axonal Ca 2+ release contributes to secondary axonal degeneration following contusive spinal cord injury. Neurobiol Dis 2020; 146:105123. [PMID: 33011333 DOI: 10.1016/j.nbd.2020.105123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023] Open
Abstract
Secondary axonal loss contributes to the persistent functional disability following trauma. Consequently, preserving axons following spinal cord injury (SCI) is a major therapeutic goal to improve neurological outcome; however, the complex molecular mechanisms that mediate secondary axonal degeneration remain unclear. We previously showed that IP3R-mediated Ca2+ release contributes to axonal dieback and axonal loss following an ex vivo laser-induced SCI. Nevertheless, targeting IP3R in a clinically relevant in vivo model of SCI and determining its contribution to secondary axonal degeneration has yet to be explored. Here we used intravital two-photon excitation microscopy to assess the role of IP3R in secondary axonal degeneration in real-time after a contusive-SCI in vivo. To visualize Ca2+ changes specifically in spinal axons over time, adult 6-8 week-old triple transgenic Avil-Cre:Ai9:Ai95 (sensory neuron-specific expression of tdTomato and the genetic calcium indicator GCaMP6f) mice were subjected to a mild (30 kdyn) T12 contusive-SCI and received delayed treatment with the IP3R blocker 2-APB (100 μM, intrathecal delivery at 3, and 24 h following injury) or vehicle control. To determine the IP3R subtype involved, we knocked-down IP3R3 using capped phosphodiester oligonucleotides. Delayed treatment with 2-APB significantly reduced axonal spheroids, increased axonal survival, and reduced intra-axonal Ca2+ accumulation within dorsal column axons at 24 h following SCI in vivo. Additionally, knockdown of IP3R3 yielded increased axon survival 24 h post-SCI. These results suggest that IP3R-mediated Ca2+ release contributes to secondary axonal degeneration in vivo following SCI.
Collapse
Affiliation(s)
- Ben C Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Guerra-Gomes S, Cunha-Garcia D, Marques Nascimento DS, Duarte-Silva S, Loureiro-Campos E, Morais Sardinha V, Viana JF, Sousa N, Maciel P, Pinto L, Oliveira JF. IP 3 R2 null mice display a normal acquisition of somatic and neurological development milestones. Eur J Neurosci 2020; 54:5673-5686. [PMID: 32166822 DOI: 10.1111/ejn.14724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Astrocytes are key players in the regulation of brain development and function. They sense and respond to the surrounding activity by elevating their intracellular calcium (Ca2+ ) levels. These astrocytic Ca2+ elevations emerge from different sources and display complex spatio-temporal properties. Ca2+ elevations are spatially distributed in global (soma and main processes) and/or focal regions (microdomains). The inositol 1,4,5-trisphosphate receptor type 2 knockout (IP3 R2 KO) mouse model lacks global Ca2+ elevations in astrocytes, and it has been used by different laboratories. However, the constitutive deletion of IP3 R2 during development may trigger compensating phenotypes, which could bias the results of experiments using developing or adult mice. To address this issue, we performed a detailed neurodevelopmental evaluation of male and female IP3 R2 KO mice, during the first 21 days of life, as well as an evaluation of motor function, strength and neurological reflexes in adult mice. Our results show that male and female IP3 R2 KO mice display a normal acquisition of developmental milestones, as compared with wild-type (WT) mice. We also show that IP3 R2 KO mice display normal motor coordination, strength and neurological reflexes in adulthood. To exclude a potential compensatory overexpression of other IP3 Rs, we quantified the relative mRNA levels of all 3 subtypes, in brain tissue. We found that, along with the complete deletion of Itpr2, there is no compensatory expression of Itpr1 or Itrp3. Overall, our results show that the IP3 R2 KO mouse is a reliable model to study the functional impact of global IP3 R2-dependent astrocytic Ca2+ elevations.
Collapse
Affiliation(s)
- Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Sofia Marques Nascimento
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Applied Artificial Intelligence Laboratory, IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| |
Collapse
|
4
|
Orem BC, Pelisch N, Williams J, Nally JM, Stirling DP. Intracellular calcium release through IP 3 R or RyR contributes to secondary axonal degeneration. Neurobiol Dis 2017; 106:235-243. [DOI: 10.1016/j.nbd.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/28/2017] [Accepted: 07/10/2017] [Indexed: 11/27/2022] Open
|
5
|
Yamagata H, Uchida S, Matsuo K, Harada K, Kobayashi A, Nakashima M, Nakano M, Otsuki K, Abe-Higuchi N, Higuchi F, Watanuki T, Matsubara T, Miyata S, Fukuda M, Mikuni M, Watanabe Y. Identification of commonly altered genes between in major depressive disorder and a mouse model of depression. Sci Rep 2017; 7:3044. [PMID: 28596527 PMCID: PMC5465183 DOI: 10.1038/s41598-017-03291-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state). Seven-hundred and ninety-seven genes (558 upregulated, 239 downregulated when compared to those of 30 healthy subjects) were identified as potential markers for MDD. These genes were then cross-matched to microarray data obtained from a mouse model of depression (676 genes, 148 upregulated, 528 downregulated). Of the six common genes identified between patients and mice, five genes (SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5) were confirmed to be downregulated in patients with MDD by quantitative real-time polymerase chain reaction. Of these genes, HIST1H2AL was significantly decreased in a second set of independent subjects (age ≥20, age of onset <50) (N = 18, subjects with MDD in a depressed state; N = 19, healthy control participants). Taken together, our findings suggest that HIST1H2AL may be a biological marker of MDD.
Collapse
Affiliation(s)
- Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Nagatoichinomiya Hospital, 17-35 Katachiyama-midoricho, Shimonoseki, Yamaguchi, 751-0885, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Katakura Hospital, 229-3 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Department of Psychiatry, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Naoko Abe-Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Health Service Center Organization for University Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, 753-8511, Japan
| | - Shigeo Miyata
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masato Fukuda
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Mikuni
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Hakodate Watanabe Hospital, 1-31-1 Yunokawa-cho, Hakodate, Hokkaido, 042-8678, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
6
|
Abstract
Depression is caused by a change in neural activity resulting from an increase in glutamate that drives excitatory neurons and may be responsible for the decline in the activity and number of the GABAergic inhibitory neurons. This imbalance between the excitatory and inhibitory neurons may contribute to the onset of depression. At the cellular level there is an increase in the concentration of intracellular Ca2+ within the inhibitory neurons that is driven by an increase in entry through the NMDA receptors (NMDARs) and through activation of the phosphoinositide signaling pathway that generates inositol trisphosphate (InsP3) that releases Ca2+ from the internal stores. The importance of these two pathways in driving the elevation of Ca2+ is supported by the fact that depression can be alleviated by ketamine that inhibits the NMDARs and scopolamine that inhibits the M1 receptors that drive InsP3/Ca2+ pathway. This increase in Ca2+ not only contributes to depression but it may also explain why individuals with depression have a strong likelihood of developing Alzheimer's disease. The enhanced levels of Ca2+ may stimulate the formation of Aβ to initiate the onset and progression of Alzheimer's disease. Just how vitamin D acts to reduce depression is unclear. The phenotypic stability hypothesis argues that vitamin D acts by reducing the increased neuronal levels of Ca2+ that are driving depression. This action of vitamin D depends on its function to maintain the expression of the Ca2+ pumps and buffers that reduce Ca2+ levels, which may explain how it acts to reduce the onset of depression.
Collapse
Affiliation(s)
- Michael J Berridge
- Emeritus Babraham Fellow, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
7
|
Sade Y, Toker L, Kara NZ, Einat H, Rapoport S, Moechars D, Berry GT, Bersudsky Y, Agam G. IP3 accumulation and/or inositol depletion: two downstream lithium's effects that may mediate its behavioral and cellular changes. Transl Psychiatry 2016; 6:e968. [PMID: 27922641 PMCID: PMC5315558 DOI: 10.1038/tp.2016.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Lithium is the prototype mood stabilizer but its mechanism is still unresolved. Two hypotheses dominate-the consequences of lithium's inhibition of inositol monophosphatase at therapeutically relevant concentrations (the 'inositol depletion' hypothesis), and of glycogen-synthase kinase-3. To further elaborate the inositol depletion hypothesis that did not decisively determine whether inositol depletion per se, or phosphoinositols accumulation induces the beneficial effects, we utilized knockout mice of either of two inositol metabolism-related genes-IMPA1 or SMIT1, both mimic several lithium's behavioral and biochemical effects. We assessed in vivo, under non-agonist-stimulated conditions, 3H-inositol incorporation into brain phosphoinositols and phosphoinositides in wild-type, lithium-treated, IMPA1 and SMIT1 knockout mice. Lithium treatment increased frontal cortex and hippocampal phosphoinositols labeling by several fold, but decreased phosphoinositides labeling in the frontal cortex of the wild-type mice of the IMPA1 colony strain by ~50%. Inositol metabolites were differently affected by IMPA1 and SMIT1 knockout. Inositoltrisphosphate administered intracerebroventricularly affected bipolar-related behaviors and autophagy markers in a lithium-like manner. Namely, IP3 but not IP1 reduced the immobility time of wild-type mice in the forced swim test model of antidepressant action by 30%, an effect that was reversed by an antagonist of all three IP3 receptors; amphetamine-induced hyperlocomotion of wild-type mice (distance traveled) was 35% reduced by IP3 administration; IP3 administration increased hippocampal messenger RNA levels of Beclin-1 (required for autophagy execution) and hippocampal and frontal cortex protein levels ratio of Beclin-1/p62 by about threefold (p62 is degraded by autophagy). To conclude, lithium affects the phosphatidylinositol signaling system in two ways: depleting inositol, consequently decreasing phosphoinositides; elevating inositol monophosphate levels followed by phosphoinositols accumulation. Each or both may mediate lithium-induced behavior.
Collapse
Affiliation(s)
- Y Sade
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - L Toker
- Department of Psychiatry and Centre for High-Throughput Biology, University of British Columbia Vancouver, BC, Canada
| | - N Z Kara
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - H Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - S Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - D Moechars
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - G T Berry
- Metabolism Program Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Y Bersudsky
- Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - G Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel,Professor, , Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev or Psychiatry Research Unit, Ben-Gurion University of the Negev or Faculty of Health Sciences, Ben-Gurion University of the Negev or Mental Health Center, Beer-Sheva 84170, Israel. E-mail:
| |
Collapse
|
8
|
Serchov T, Heumann R, van Calker D, Biber K. Signaling pathways regulating Homer1a expression: implications for antidepressant therapy. Biol Chem 2016; 397:207-14. [DOI: 10.1515/hsz-2015-0267] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/02/2015] [Indexed: 01/20/2023]
Abstract
Abstract
Homer1a is upregulated by several different antidepressant measures, including non-pharmacological treatments, like sleep deprivation (SD) and electroconvulsive therapy (ECT) and antidepressant drugs, such as imipramine, fluoxetine and ketamine. Homer1a induction might thus be a crucial joint mechanism for antidepressant therapy in general. However, the upstream signaling pathways that regulate or induce Homer1a expression are still not well understood. The main focus of the present review is to offer an overview of the current knowledge about the potential role of Homer1a in depression and the signaling pathways responsible for Homer1a regulation. It is suggested here that a detailed characterization of the signaling mechanisms leading to Homer1a expression might provide novel therapeutic targets for antidepressant drug development.
Collapse
|
9
|
Sharma A. Systems Genomics Support for Immune and Inflammation Hypothesis of Depression. Curr Neuropharmacol 2016; 14:749-58. [PMID: 26733279 PMCID: PMC5050401 DOI: 10.2174/1570159x14666160106155331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immune system plays an important role in brain development and function. With the discovery of increased circulating inflammatory cytokine levels in depression over two decades ago, evidence implicating immune system alterations in the disease has increasingly accumulated. OBJECTIVE To assess the underlying etiology and pathophysiology, a brief overview of the hypothesis free genomic, transcriptomic and proteomic studies in depression is presented here in order to specifically examine if the immune and inflammation hypothesis of depression is supported. RESULTS It is observed that genes identified in genome-wide association studies, and genes showing differential expression in transcriptomic studies in human depression do separately overrepresent processes related to both development as well as functioning of the immune system, and inflammatory response. These processes are also enriched in differentially expressed genes reported in animal models of antidepressant treatment. It is further noted that some of the genes identified in genome sequencing and proteomic analyses in human depression, and transcriptomic studies in chronic social defeat stress, an established animal model of depression, relate to immune and inflammatory pathways. CONCLUSION In conclusion, integrative genomics evidence supports the immune and inflammation hypothesis of depression.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| |
Collapse
|
10
|
Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 2015; 87:549-62. [PMID: 26247862 DOI: 10.1016/j.neuron.2015.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments.
Collapse
|
11
|
Mizuno K, Kurokawa K, Ohkuma S. Nicotinic acetylcholine receptors regulate type 1 inositol 1,4,5-trisphosphate receptor expression via calmodulin kinase IV activation. J Neurosci Res 2014; 93:660-5. [PMID: 25430056 DOI: 10.1002/jnr.23518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/28/2014] [Accepted: 10/17/2014] [Indexed: 11/05/2022]
Abstract
Type 1 inositol 1,4,5-trisphosphate receptors (IP3 R-1) are among the important calcium channels regulating intracellular Ca(2+) concentration in the central nervous system. In a previous study, we showed that drugs of abuse, such as cocaine, methamphetamine, and ethanol, induced IP3 R-1 upregulation via the calcium signal transduction pathway in psychological dependence. Although nicotine, a major component in tobacco smoke, participates in psychological and/or physical dependence, it has not yet been clarified how nicotine alters IP3 R-1 expression. The present study, therefore, seeks to clarify the mechanism bgy which nicotine modifies IP3 R-1 expression by using mouse cerebral cortical neurons in primary culture. Nicotine induced dose- and time-dependent upregulation of IP3 R-1 protein following its mRNA increase, and the latter was significantly suppressed by a nonselective nicotinic acetylcholine receptors (nAChR) antagonist, mecamylamine. Both cFos and phosphorylated-cJun (p-cJun) were immediately increased in the nucleus, together with an increase of calmodulin kinase (CaMK) IV but not CaMKII expression after nicotine exposure. A nonselective inhibitor of CaMKs, KN-93, and a calcium chelating regent, BAPTA-AM, completely suppressed the expression of cFos and p-cJun in the nucleus as well as the nicotine-induced IP3 R-1 upregulation. These results indicate that nAChR activation by nicotine upregulates IP3 R-1 via increase of activator protein-1, which is a cFos and cJun dimmer, in the nucleus, with activation of Ca(2+) signaling transduction processes.
Collapse
Affiliation(s)
- Koji Mizuno
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
12
|
Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:156-67. [DOI: 10.1590/1516-4446-2013-1224] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Emilio L. Streck
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Cinara L. Gonçalves
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Camila B. Furlanetto
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Giselli Scaini
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - João Quevedo
- National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil; UNESC, Brazil
| |
Collapse
|
13
|
Mizuno K, Kurokawa K, Ohkuma S. Regulatory mechanisms and pathophysiological significance of IP3 receptors and ryanodine receptors in drug dependence. J Pharmacol Sci 2013; 123:306-11. [PMID: 24285081 DOI: 10.1254/jphs.13r07cp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Calcium is a ubiquitous intracellular signaling molecule required for initiating and regulating neuronal functions. Ca(2+) release from intracellular stores in the endoplasmic reticulum into intracellular spaces via intracellular Ca(2+)-releasing channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), is one mechanism altering the intracellular Ca(2+) concentration. Functional abnormalities in endoplasmic calcium channels can disturb cellular calcium homeostasis and, in turn, produce pathological conditions. Indeed, our recent studies have indicated the involvement of these upregulated calcium channels in development of the rewarding effect of a drug of abuse and the suppression of its rewarding effect by calcium-channel inhibitors, which suggests a possible functional relationship between intracellular dynamics and the development of the rewarding effects induced by an abused drug. Although previous reports showed that the most important regulators of both RyR and IP3R channel functions are changes in the intracellular Ca(2+) concentration and in phosphorylation of these channels by numerous kinases and calcium modulators, little information is available to clarify how the expression of intracellular calcium channels is regulated. In this review, we therefore introduce the roles and regulatory mechanisms of intracellular calcium channels in drug dependence, especially in the rewarding effect induced by the abused drug.
Collapse
Affiliation(s)
- Koji Mizuno
- Department of Pharmacology, Kawasaki Medical School, Japan
| | | | | |
Collapse
|
14
|
Mizuno K, Kurokawa K, Ohkuma S. Activation of GABAAreceptors suppresses ethanol-induced upregulation of type 1 IP3receptors. Synapse 2012; 67:51-5. [DOI: 10.1002/syn.21610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Koji Mizuno
- Department of Pharmacology, Kawasaki Medical School, Matsushima 577, Kurashiki 701-0192, Japan
| | | | | |
Collapse
|
15
|
Mizuno K, Kurokawa K, Ohkuma S. Dopamine D1 receptors regulate type 1 inositol 1,4,5-trisphosphate receptor expression via both AP-1- and NFATc4-mediated transcriptional processes. J Neurochem 2012; 122:702-13. [PMID: 22686291 DOI: 10.1111/j.1471-4159.2012.07827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although our recent report demonstrates the essential involvement of up-regulation of a regulator of intracellular Ca(2+) concentration, type 1 inositol 1,4,5-trisphosphate receptors (IP(3) Rs-1), mediated via dopamine D1-like receptor (D1DR) stimulation in the cocaine-induced psychological dependence, the exact mechanisms of regulation of IP(3) R-1 expression by D1DRs have not yet been clarified. This study attempted to clarify these mechanisms using mouse cerebral cortical neurons. An agonist for phosphatidylinositide-linked D1DRs, SKF83959, induced dose- and time-dependently IP(3) R-1 protein up-regulation following its mRNA increase without cAMP production. U73122 (a phospholipase C inhibitor), BAPTA-AM (an intracellular calcium chelating reagent), W7 (a calmodulin inhibitor), KN-93 (a calmodulin-dependent protein kinases inhibitor), and FK506 (a calcineurin inhibitor), significantly inhibited the SKF83959-induced IP(3) R-1 up-regulation. Furthermore, immunohistochemical examinations showed that SKF83959 increased expression of both cFos and cJun in nucleus as well as enhanced translocation of both calcineurin and NFATc4 complex to nucleus from cytoplasm. In addition, SKF83959 directly recruited binding of both AP-1 and NFATc4 to IP(3) R-1 promoter region. These results indicate that D1DR activation induces IP(3) R-1 up-regulation via increased translocation of AP-1 as well as NFATc4 in Gαq protein-coupled calcium signaling transduction pathway.
Collapse
Affiliation(s)
- Koji Mizuno
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
16
|
Abstract
Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.
Collapse
|
17
|
Li B, Dong L, Fu H, Wang B, Hertz L, Peng L. Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 2011; 50:42-53. [PMID: 21640379 DOI: 10.1016/j.ceca.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
Abstract
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca(2+) influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca(2+) concentration [Ca(2+)](i), determined with Fura-2. The agonists were the 5-HT(2B) agonist fluoxetine, the α(2)-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP(3) receptor (IP(3)R) agonists. In untreated sister cultures each agonist distinctly increased [Ca(2+)](i), but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP(3)R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca(2+) entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca(2+) stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca(2+)](i) regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional 'serotonin-specific reuptake inhibitors' (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Casamassima F, Hay AC, Benedetti A, Lattanzi L, Cassano GB, Perlis RH. L-type calcium channels and psychiatric disorders: A brief review. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1373-90. [PMID: 20886543 DOI: 10.1002/ajmg.b.31122] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 07/28/2010] [Indexed: 01/11/2023]
Abstract
Emerging evidence from genome-wide association studies (GWAS) support the association of polymorphisms in the alpha 1C subunit of the L-type voltage-gated calcium channel gene (CACNA1C) with bipolar disorder. These studies extend a rich prior literature implicating dysfunction of L-type calcium channels (LTCCs) in the pathophysiology of neuropsychiatric disorders. Moreover, calcium channel blockers reduce Ca(2+) flux by binding to the α1 subunit of the LTCC and are used extensively for treating hypertension, preventing angina, cardiac arrhythmias and stroke. Calcium channel blockers have also been studied clinically in psychiatric conditions such as mood disorders and substance abuse/dependence, yielding conflicting results. In this review, we begin with a summary of LTCC pharmacology. For each category of disorder, this article then provides a review of animal and human data. In particular, we extensively focus on animal models of depression and clinical trials in mood disorders and substance abuse/dependence. Through examining rationale and study design of published clinical trials, we provide some of the possible reasons why we still do not have definitive evidence of efficacy of calcium-channel antagonists for mood disorders. Refinement of genetic results and target phenotypes, enrollment of adequate sample sizes in clinical trials and progress in physiologic and pharmacologic studies to synthesize tissue and isoform specific calcium channel antagonists, are all future challenges of research in this promising field. © 2010 Wiley-Liss, Inc.
Collapse
|