1
|
Zhang XM, Lun MH, Du W, Ma F, Huang ZQ. The κ-Opioid Receptor Agonist U50488H Ameliorates Neuropathic Pain Through the Ca2+/CaMKII/CREB Pathway in Rats. J Inflamm Res 2022; 15:3039-3051. [PMID: 35645576 PMCID: PMC9140919 DOI: 10.2147/jir.s327234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To observe the ameliorative effect of kappa opioid receptor (KOR) agonist on rats with neuropathic pain (NP) and investigate the mechanism of action of the calcium ion (Ca2+)/calcium/calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP response element-binding protein (CREB) pathway. Methods A total of 40 Sprague Dawley rats were randomly divided into four groups: sham-operation group (Sham group), NP model group (NP group), NP + KOR agonist U50488H group (NU group) and NP + specific CaMKII antagonist (KN93) + U50488H group (NKU group). The thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of each group of rats were determined. ELISA was applied to examine the changes in inflammatory factors and oxidative stress factors, and the apoptotic rate in dorsal root ganglia was observed using TUNEL staining. Ca2+ concentration, content of oxidative stress index ROS and the release of calcitonin gene-related peptide (CGRP) and N-methyl-D-aspartate receptor (NMDAR) in the dorsal root ganglia were measured by the immunofluorescence assay. Finally, Western blotting was performed to detect expression changes in the Ca2+/CaMKII/CREB pathway. Results The KOR agonist U50488H could improve the values of TWL and MWT of NP the rats, inhibit inflammatory responses and relieve oxidative stress injury. Its mechanisms of action were associated with U50488H repression of Ca2+ influx, reduction of CGRP and NMDAR releases in the dorsal root ganglia and decreases in CaMKII and CREB phosphorylations in NP rats. Conclusion The KOR agonist ameliorates NP through suppressing the activity of the Ca2+/CaMKII/CREB pathway.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
- Correspondence: Xiao-Min Zhang; Ze-Qing Huang Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China Email
| | - Ming-Hui Lun
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
| | - Fang Ma
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
| | - Ze-Qing Huang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
- Correspondence: Xiao-Min Zhang; Ze-Qing Huang Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China Email
| |
Collapse
|
2
|
Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci 2017; 36:5661-73. [PMID: 27194343 DOI: 10.1523/jneurosci.2469-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The current study reports on a synaptic mechanism through which D1-like receptors (D1LRs) modulate spinal nociception and plasticity by regulating activation of the μ-opioid receptor (MOR).D1LR stimulation with agonist SKF 38393 concentration-dependently depressed C-fiber-evoked potentials in rats receiving spinal nerve ligation (SNL), but not in uninjured rats. Depression was prevented by MOR- but not GABA-receptor blockade. Neurons expressing the D1 subtype were immunopositive for met-enkephalin and vesicular glutamate transporter VGLUT2, but not for GABAergic marker vGAT.Nerve ligation was followed by increased immunoreactivity for D1 in synaptic compartment (P3) in dorsal horn homogenates and presynaptic met-enkephalin-containing boutons. SNL led to increased immunoreactivity for met-enkephalin in dorsal horn homogenates, which was dose-dependently attenuated by selective D1LR antagonist SCH 23390. During blockade of either D1R or MOR, low-frequency (0.2 or 3 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials, revealing a constituent role of both receptors in repressing afferent-induced synaptic plasticity. LFS consistently induced NMDA receptor-dependent LTP in nerve-injured rats. The ability of MOR both to prevent LTP and to modulate mechanical and thermal pain thresholds in behavioral tests was preserved in nerve-ligated rats that were postoperatively treated with SCH 23390. D1LR priming for 30 min sufficed to disrupt MOR function in otherwise naive rats via a mechanism involving receptor overuse.The current data support that, whereas D1LR-modulated MOR activation is instrumental in antinociception and endogenous repression of synaptic plasticity, this mechanism deteriorates rapidly by sustained use, generating increased vulnerability to afferent input. SIGNIFICANCE STATEMENT The current study shows that dopamine D1-like receptors (D1LRs) and μ-opioid receptors (MOR) in the spinal dorsal horn constitutively repress the expression of synaptic long-term potentiation (LTP) of C-fiber-evoked potentials. Anatomical data are provided supporting that the D1 subtype regulates MOR function by modulating met-enkephalin release. Sustained neuropathic pain induced by spinal nerve ligation is accompanied by D1R and met-enkephalin upregulation, acquired D1LR-mediated antinociception, and a loss of endogenous repression of further synaptic plasticity. We show that the ability of MOR to oppose LTP is rapidly impaired by sustained D1LR activation via a mechanism involving sustained MOR activation.
Collapse
|
3
|
Synaptic upregulation and superadditive interaction of dopamine D2- and μ-opioid receptors after peripheral nerve injury. Pain 2014; 155:2526-2533. [DOI: 10.1016/j.pain.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022]
|
4
|
Aira Z, Barrenetxea T, Buesa I, Azkue JJ. Plasticity of α2-adrenergic spinal antinociception following nerve injury: selective, bidirectional interaction with the delta opioid receptor. Brain Res 2014; 1594:190-203. [PMID: 25446445 DOI: 10.1016/j.brainres.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
Abstract
Interactions of opioid receptors with other receptor families can be made use of to improve analgesia and reduce adverse effects of opioid analgesics. We investigated interactions of the α2-adrenergic receptor (α2AR) with opioid receptors of the mu (MOR) and delta (DOR) types in the spinal dorsal horn in an animal model of neuropathic pain induced by spinal nerve ligation. Nine days after nerve injury, immunoreactivity for the α2AR subtype A (α2AAR) was increased both in tissue homogenates and at pre- and post-synaptic sites in transverse sections. The efficacy of spinally administered α2AAR agonist guanfacine at reducing C-fiber-evoked field potentials was increased in nerve-ligated rats. This reducing effect was impaired by simultaneous administration of DOR antagonist naltrindole, but not MOR antagonist CTOP, suggesting that concurrent DOR activation was required for α2AAR-mediated inhibition. While DOR agonist deltorphin II and MOR agonist DAMGO both effectively depressed C-fiber-evoked spinal field potentials, DOR- but not MOR-mediated depression was enhanced by subclinical guanfacine. In conscious, nerve-ligated rats, chronically administered deltorphin II produced stable thermal and mechanical antinociception over the 9 following days after nerve injury without apparent signs of habituation. Such an effect was dramatically enhanced by co-administration of a low dose of guanfacine, which reversed thermal and mechanical thresholds to levels near those prior to injury. The results suggest that spinal, α2AAR-mediated antinociception is increased after nerve injury and based on DOR co-activation. We demonstrate in vivo that α2AAR/DOR interaction can be exploited to provide effective behavioral antinociception during neuropathic pain.
Collapse
Affiliation(s)
- Zigor Aira
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, PO Box 699, 48080 Bilbao, Spain
| | - Teresa Barrenetxea
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, PO Box 699, 48080 Bilbao, Spain
| | - Itsaso Buesa
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, PO Box 699, 48080 Bilbao, Spain
| | - Jon Jatsu Azkue
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, PO Box 699, 48080 Bilbao, Spain.
| |
Collapse
|
5
|
Ohnami S, Kato A, Ogawa K, Shinohara S, Ono H, Tanabe M. Effects of milnacipran, a 5-HT and noradrenaline reuptake inhibitor, on C-fibre-evoked field potentials in spinal long-term potentiation and neuropathic pain. Br J Pharmacol 2013; 167:537-47. [PMID: 22537101 DOI: 10.1111/j.1476-5381.2012.02007.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The analgesic action of 5-HT and noradrenaline reuptake inhibitors (SNRIs) on nociceptive synaptic transmission in the spinal cord is poorly understood. We investigated the effects of milnacipran, an SNRI, on C-fibre-evoked field potentials (FPs) in spinal long-term potentiation (LTP), a proposed synaptic mechanism of hypersensitivity, and on the FPs in a neuropathic pain model. EXPERIMENTAL APPROACH C-fibre-evoked FPs by electrical stimulation of the sciatic nerve fibres were recorded in the spinal dorsal horn of anaesthetized adult rats, and LTP was induced by high-frequency stimulation of the sciatic nerve fibres. A rat model of neuropathic pain was produced by L5 spinal nerve ligation and transection. KEY RESULTS Milnacipran produced prolonged inhibition of C-fibre-evoked FPs when applied spinally after the establishment of LTP of C-fibre-evoked FPs in naïve animals. In the neuropathic pain model, spinal administration of milnacipran clearly reduced the basal C-fibre-evoked FPs. These inhibitory effects of milnacipran were blocked by spinal administration of methysergide, a 5-HT½ receptor antagonist, and yohimbine or idazoxan, α₂-adrenoceptor antagonists. However, spinal administration of milnacipran in naïve animals did not affect the basal C-fibre-evoked FPs and the induction of spinal LTP. CONCLUSION AND IMPLICATIONS Milnacipran inhibited C-fibre-mediated nociceptive synaptic transmission in the spinal dorsal horn after the establishment of spinal LTP and in the neuropathic pain model, by activating both spinal 5-hydroxytryptaminergic and noradrenergic systems. The condition-dependent inhibition of the C-fibre-mediated transmission by milnacipran could provide novel evidence regarding the analgesic mechanisms of SNRIs in chronic pain.
Collapse
Affiliation(s)
- S Ohnami
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Aira Z, Buesa I, Del Caño GG, Salgueiro M, Mendiable N, Mingo J, Aguilera L, Bilbao J, Azkue JJ. Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors. Pain 2012; 153:1418-1425. [PMID: 22520172 DOI: 10.1016/j.pain.2012.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/19/2012] [Accepted: 03/14/2012] [Indexed: 01/11/2023]
Abstract
Opioid analgesia is compromised by intracellular mediators such as protein kinase C (PKC). The phosphatidylinositol hydrolysis-coupled serotonin receptor 5-HT2 is ideally suited to promote PKC activation. We test the hypothesis that 5-HT2A and 5-HT2B receptors, which have been previously shown to become pro-excitatory after spinal nerve ligation (SNL), can negatively influence the ability of opioids to depress spinal excitation evoked by noxious input. Spinal superfusion with (100 nM) mu-opioid receptor (MOR)-agonist DAMGO significantly depressed C fiber-evoked spinal field potentials. Simultaneous administration of subclinical 5-HT2AR antagonist 4F 4PP (100 nM) or 5-HT2BR antagonist SB 204741 (100 nM) significantly reduced the IC50 value for DAMGO in nerve-ligated rats (97.56 nM ± 1.51 and 1.20 nM ± 1.28 respectively, relative to 104 nM ± 1.08 at the baseline condition), but not in sham-operated rats. Both antagonists failed to alter depression induced by delta-opioid receptor (DOR)-agonist D-ala2-deltorphin II after SNL as well as in the sham condition. Western blot analysis of dorsal horn homogenates revealed bilateral upregulation of 5-HT2AR and 5-HT2BR protein band densities after SNL. As assessed from double immunofluorescence labeling for confocal laser scanning microscopy, scarce dorsal horn cell processes showed co-localization color overlay for 5-HT2AR/MOR, 5-HT2BR/MOR, 5-HT2AR/DOR, or 5-HT2BR/DOR in sham-operated rats. Intensity correlation-based analyses showed significant increases in 5-HT2AR/MOR and 5-HT2BR/MOR co-localizations after SNL. These results indicate that plasticity of spinal serotonergic neurotransmission can selectively reduce spinal MOR mechanisms via 5-HT2A and 5-HT2B receptors, including upregulation of the latter and increased expression in dorsal horn neurons containing MOR.
Collapse
Affiliation(s)
- Zigor Aira
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain Department of Neurosciences, School of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain Department of Surgery, Radiology and Physical Medicine, University of the Basque Country, Bilbao, Spain Department of Preventive Medicine and Public Health, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|