1
|
El-Naggar AE, Helmy MM, El-Gowilly SM, El-Mas MM. Suppression by central adenosine A3 receptors of the cholinergic defense against cardiovascular aberrations of sepsis: role of PI3K/MAPKs/NFκB signaling. Front Pharmacol 2024; 15:1418981. [PMID: 38966542 PMCID: PMC11222418 DOI: 10.3389/fphar.2024.1418981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Despite the established role of peripheral adenosine receptors in sepsis-induced organ dysfunction, little or no data is available on the interaction of central adenosine receptors with sepsis. The current study tested the hypothesis that central adenosine A3 receptors (A3ARs) modulate the cardiovascular aberrations and neuroinflammation triggered by sepsis and their counteraction by the cholinergic antiinflammatory pathway. Methods: Sepsis was induced by cecal ligation and puncture (CLP) in rats pre-instrumented with femoral and intracisternal (i.c.) catheters for hemodynamic monitoring and central drug administration, respectively. Results: The CLP-induced hypotension, reduction in overall heart rate variability (HRV) and sympathovagal imbalance towards parasympathetic predominance were abolished by i.v. nicotine (100 μg/kg) or i.c. VUF5574 (A3AR antagonist, 2 µg/rat). In addition, the selective A3AR agonist, 3-iodobenzyl-5'-N-methylcarboxamidoadenosine IB-MECA, 4 µg/rat, i.c.) exaggerated the hypotension and cardiac autonomic dysfunction induced by sepsis and opposed the favorable nicotine actions against these septic manifestations. Immunohistochemically, IB-MECA abolished the nicotine-mediated downregulation of NFκB and NOX2 expression in rostral ventrolateral medullary areas (RVLM) of brainstem of septic rats. The inhibitory actions of IB-MECA on nicotine responses disappeared after i.c. administration of PD98059 (MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor) or wortmannin (PI3K inhibitor). Moreover, infliximab (TNFα inhibitor) eliminated the IB-MECA-induced rises in RVLM-NFκB expression and falls in HRV, but not blood pressure. Conclusion: Central PI3K/MAPKs pathway mediates the A3AR counteraction of cholinergic defenses against cardiovascular and neuroinflammatory aberrations in sepsis.
Collapse
Affiliation(s)
- Amany E. El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mai M. Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
2
|
Sallam MY, El-Gowilly SM, El-Mas MM. Central α7 and α4β2 nicotinic acetylcholine receptors offset arterial baroreceptor dysfunction in endotoxic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1587-1598. [PMID: 36100757 DOI: 10.1007/s00210-022-02289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Cardiac autonomic neuropathy is a prominent feature of endotoxemia. Given the defensive role of the cholinergic pathway in inflammation, we assessed the roles of central homomeric α7 and heteromeric α4β2 nAChRs in arterial baroreceptor dysfunction caused by endotoxemia in rats. Endotoxemia was induced by i.v. administration of lipopolysaccharides (LPS, 10 mg/kg), and baroreflex activity was measured by the vasoactive method, which assesses reflex chronotropic responses to increments (phenylephrine, PE) or decrements (sodium nitroprusside, SNP) in blood pressure. Shifts caused by LPS in PE/SNP baroreflex curves and associated decreases in baroreflex sensitivity (BRS) were dose-dependently reversed by nicotine (25-100 μg/kg, i.v.). The nicotine effect disappeared after intracisternal administration of methyllycaconitine (MLA) or dihydro-β-erythroidine (DHβE), selective blockers of α7 and α4β2 receptors, respectively. The advantageous effect of nicotine on BRSPE was replicated in rats treated with PHA-543613 (α7-nAChR agonist) or 5-iodo-A-85380 (5IA, α4β2-nAChRs agonist) in dose-dependent fashions. Conversely, the depressed BRSSNP of endotoxic rats was improved after combined, but not individual, treatments with PHA and 5IA. Central α7 and α4β2 nAChR activation underlies the nicotine counteraction of arterial baroreflex dysfunction induced by endotoxemia. Moreover, the contribution of these receptors depends on the nature of the reflex chronotropic response (bradycardia vs. tachycardia).
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt.
- Department of Pharmacology and Toxicology, College of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
3
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
4
|
Elzokm SS, Fouda MA, Abdel Moneim RA, El-Mas MM. Distinct effects of calcineurin dependent and independent immunosuppressants on endotoxaemia-induced nephrotoxicity in rats: Role of androgens. Clin Exp Pharmacol Physiol 2021; 48:1261-1270. [PMID: 34042216 DOI: 10.1111/1440-1681.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Evidence suggests that immunosuppressant therapies protect against harmful effects of endotoxaemia. In this study, we tested whether calcineurin-dependent (cyclosporine/tacrolimus) and -independent (sirolimus) immunosuppressants variably influence nephrotoxicity induced by endotoxaemia and whether this interaction is modulated by testosterone. We investigated the effects of immunosuppressants on renal histopathological, biochemical and inflammatory profiles in endotoxic male rats and the role of androgenic state in the interaction. Six-hour treatment of rats with lipopolysaccharide (LPS, 3 mg/kg) increased (i) serum urea/creatinine, (ii) width of proximal/distal tubules, (iii) tubular degeneration and vacuolation, (iv) Western protein expressions of renal toll-like receptor 4, monocyte chemoattractant protein-1, and NADPH oxidase-2, and (v) serum tumour necrosis factor-α and myeloperoxidase. These endotoxic manifestations were intensified and eliminated upon concurrent exposure to cyclosporine and sirolimus, respectively. The cyclosporine actions appear to be a class rather than a drug effect because similar exacerbation of LPS nephrotoxicity was observed in rats treated with tacrolimus, another calcineurin inhibitor (CNI). Moreover, the deteriorated renal outcomes in LPS/tacrolimus-treated rats were reduced after castration or androgen receptor blockade by flutamide. The data suggest opposite effects for calcineurin-dependent (exaggeration) and -independent immunosuppressants (amelioration) on renal defects of endotoxaemia and implicate androgenic pathways in the worsened endotoxic renal profile induced by CNIs.
Collapse
Affiliation(s)
- Shrouk S Elzokm
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohamed A Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rahab A Abdel Moneim
- Department of Histology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Gui Q, Jiang Z, Zhang L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021; 93:107420. [PMID: 33540245 DOI: 10.1016/j.intimp.2021.107420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Cyclosporine A(CsA), a classic immunosuppressant, is mainly applied for solid organ transplantation and some autoimmune diseases by suppressing T lymphocytes. Early studies showed that the application of CsA is primarily focused on chronic but not acute inflammation, nevertheless, increasing evidence supporting a role for CsA in acute inflammation, although most of proofs come from experimental models. It has long been known to us that the nuclear factor of activated T cells (NFAT) is the target of CsA to regulate T lymphocytes. However, NFAT also contributes to the regulation of innate immune cells, thus, CsA can not only target lymphocytes but also innate immune cells such as monocytes/macrophages, dendritic cells and neutrophils, which provides a basis for CsA to act on acute inflammation. Moreover, some other pathophysiological events in acute inflammation such as decreased vascular activity, mitochondrial dysfunction and endogenous cell apoptosis can also be alleviated by CsA. There being a moderate successes in the application of CsA for experimental acute inflammation such as sepsis, trauma/hemorrhagic shock and ischemic/reperfusion injury, yet data of the clinical treatment is not clear. In this review, we will critically analyze the existing hypotheses, summarize the application of CsA and its possible mechanisms in various acute inflammation over the past few decades, hope to provide some clues for the clinical treatment of acute inflammation.
Collapse
Affiliation(s)
- Qiuyi Gui
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Sallam MY, El-Gowilly SM, Fouda MA, Abd-Alhaseeb MM, El-Mas MM. Brainstem cholinergic pathways diminish cardiovascular and neuroinflammatory actions of endotoxemia in rats: Role of NFκB/α7/α4β2AChRs signaling. Neuropharmacology 2019; 157:107683. [DOI: 10.1016/j.neuropharm.2019.107683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022]
|
7
|
Helmy MM, Helmy MW, El-Mas MM. Upregulation of cystathionine-γ-lyase/hydrogen sulfide pathway underlies the celecoxib counteraction of cyclosporine-induced hypertension and renal insult in rats. Prostaglandins Other Lipid Mediat 2019; 141:1-10. [DOI: 10.1016/j.prostaglandins.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
8
|
Sallam MY, El-Gowilly SM, El-Gowelli HM, El-Lakany MA, El-Mas MM. Additive counteraction by α7 and α4β2-nAChRs of the hypotension and cardiac sympathovagal imbalance evoked by endotoxemia in male rats. Eur J Pharmacol 2018; 834:36-44. [DOI: 10.1016/j.ejphar.2018.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023]
|
9
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Hemin blunts the depressant effect of chronic nicotine on reflex tachycardia via activation of central NOS/PI3K pathway in female rats. Pharmacol Rep 2018; 70:455-462. [DOI: 10.1016/j.pharep.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/08/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022]
|
10
|
Ibrahim KS, El-Yazbi AF, El-Gowelli HM, El-Mas MM. Heme oxygenase byproducts variably influences myocardial and autonomic dysfunctions induced by the cyclosporine/diclofenac regimen in female rats. Biomed Pharmacother 2018; 101:889-897. [DOI: 10.1016/j.biopha.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
|
11
|
Sallam MY, El-Gowilly SM, Abdel-Galil AGA, El-Mas MM. Activation of central GABA B receptors offsets the cyclosporine counteraction of endotoxic cardiovascular outcomes in conscious rats. Fundam Clin Pharmacol 2018; 32:485-498. [PMID: 29667225 DOI: 10.1111/fcp.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/15/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
We have previously shown that cyclosporine (CSA) counteracts cardiovascular manifestations induced by endotoxemia (lipopolysaccharide, LPS) such as hypotension and cardiac autonomic dysfunction in conscious rats. In this study, we investigated whether the facilitation of central γ-amino butyric acid (GABA) neurotransmission blunts these favorable influences of CSA. The LPS-CSA interaction was determined in the absence and presence of drugs that activate GABAA or GABAB receptors or elevate synaptic GABA levels in the central nervous system. The consequent i.v. administration of CSA (10 mg/kg) blunted the LPS-evoked hypotension, tachycardia, and reductions in time- and frequency-domain indices of heart rate variability (measures of cardiac autonomic control) evoked by LPS (10 mg/kg i.v.). The ability of CSA to reverse the LPS effects disappeared in rats treated intracisternally (i.c.) with baclofen (selective GABAB agonist, 2 μg/rat) but not muscimol (selective GABAA agonist, 1 μg/rat), indicating a preferential compromising action for central GABAB receptors on the advantageous effects of CSA. Moreover, the improvement by CSA of LPS-evoked cardiovascular derangements was also eliminated after concurrent i.c. administration of vigabatrin (GABA transaminase inhibitor, 200 μg/rat) or tiagabine (GABA reuptake inhibitor, 100 μg/rat). These results demonstrate that the activation of central GABAB receptors either directly via baclofen or indirectly following interventions that boost GABA levels in central synapses counterbalances the rectifying action of CSA on endotoxemia.
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| | - Abdel-Galil A Abdel-Galil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| |
Collapse
|
12
|
Helmy MW, Helmy MM, El-Mas MM. Enhanced lipoxygenase/LTD4 signaling accounts for the exaggerated hypertensive and nephrotoxic effects of cyclosporine plus indomethacin in rats. Biomed Pharmacother 2018; 102:309-316. [PMID: 29571015 DOI: 10.1016/j.biopha.2018.03.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
The combined use of cyclosporine (CSA) and nonsteroidal antiinflammatory drugs (NSAIDs) causes exaggerated rises in systolic blood pressure (SBP) and nephrotoxicity. We examined whether these influences relate to the arachidonate/5-lipoxygenase (LOX) pathway. Rats were treated with CSA (20 mg kg-1 day-1), indomethacin (5 mg kg-1 day-1), or their combination for 10 days. Changes in SBP and renal biochemical/histopathological characteristics along with leukotriene levels were determined in rats treated with or without LT receptor antagonists. CSA or indomethacin caused: (i) renal tubular atrophy and interstitial fibrosis, (ii) increases in serum creatinine, blood urea nitrogen (BUN), and renal LTD4, LTB4, TNF-α, TGF-β1, and caspase-3, and (iii) decreases in renal PGE2 and total antioxidant capacity (TAC). SBP measured by tail-cuff plethysmography was increased by CSA but not indomethacin. These effects were mostly intensified in rats treated with CSA plus indomethacin. The co-treatment with montelukast (cysteinyl LT receptor blocker), but not ONO-4057 (LTB4 receptor blocker), ameliorated CSA/indomethacin-evoked hypertension, renal structural/biochemical deterioration, and LTD4 levels. Moreover, montelukast exhibited a greater capacity in reversing inflammatory, oxidative, apoptotic, and fibrotic abnormalities induced by CSA/indomethacin. Overall, lipoxygenase/LTD4 upregulation contributes to the exaggerated hypertension and nephrotoxicity caused by CSA/indomethacin. The therapeutic potential of cysteinyl LT receptor antagonism in rectifying CSA/NSAIDs-evoked anomalies is warranted.
Collapse
Affiliation(s)
- Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Egypt
| | - Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
13
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
14
|
Sallam MY, El-Gowilly SM, Abdel-Galil AGA, El-Mas MM. Cyclosporine counteracts endotoxemia-evoked reductions in blood pressure and cardiac autonomic dysfunction via central sGC/MAPKs signaling in rats. Eur J Pharmacol 2017; 797:143-152. [DOI: 10.1016/j.ejphar.2017.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
|
15
|
Modulation by Central MAPKs/PI3K/sGc of the TNF-α/iNOS-dependent Hypotension and Compromised Cardiac Autonomic Control in Endotoxic Rats. J Cardiovasc Pharmacol 2016; 68:171-81. [DOI: 10.1097/fjc.0000000000000400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Central GABAA receptors are involved in inflammatory and cardiovascular consequences of endotoxemia in conscious rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:279-88. [PMID: 26685896 DOI: 10.1007/s00210-015-1201-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
γ-Aminobutyric acid (GABA), the principal brain inhibitory neurotransmitter, modulates inflammatory and neurodegenerative disease. Here, we tested the hypothesis that central GABAergic neurotransmission mediates the detrimental inflammatory, hemodynamic, and cardiac autonomic actions of endotoxemia. The effects of drugs that block GABA receptors or interfere with GABA uptake or degradation on blood pressure (BP), heart rate (HR), and HR variability (HRV) responses elicited by i.v. lipopolysaccharide (LPS) were assessed in conscious rats. The hypotensive effect of LPS (10 mg/kg) was blunted after intracisternal (i.c.) administration of bicuculline (GABAA receptor antagonist) or saclofen (GABAB receptor antagonist). By contrast, the concomitant LPS-evoked tachycardia and decreases in time domain and frequency domain indices of HRV (measures of cardiac autonomic control) were abolished upon treatment with bicuculline but not saclofen. Increases in serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) caused by LPS disappeared in the presence of bicuculline or saclofen, whereas LPS-evoked increases in serum nitric oxide metabolites (NOx) were counteracted by bicuculline only. None of the endotoxemia effects was altered in rats treated with i.c. tiagabine (GABA reuptake inhibitor) or vigabatrin (GABA transaminase inhibitor). These data suggest a major role for central GABAA receptors in the inflammatory and cardiovascular effects of endotoxemia.
Collapse
|
17
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK. Toxicol Appl Pharmacol 2015; 289:466-73. [DOI: 10.1016/j.taap.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
|
18
|
El-Mas MM, Helmy MW, Ali RM, El-Gowelli HM. Celecoxib, but not indomethacin, ameliorates the hypertensive and perivascular fibrotic actions of cyclosporine in rats: role of endothelin signaling. Toxicol Appl Pharmacol 2015; 284:1-7. [PMID: 25656942 DOI: 10.1016/j.taap.2015.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/29/2014] [Accepted: 01/22/2015] [Indexed: 11/17/2022]
Abstract
The immunosuppressant drug cyclosporine (CSA) is used with nonsteroidal antiinflammatory drugs (NSAIDs) in arthritic conditions. In this study, we investigated whether NSAIDs modify the deleterious hypertensive action of CSA and the role of endothelin (ET) receptors in this interaction. Pharmacologic, protein expression, and histopathologic studies were performed in rats to investigate the roles of endothelin receptors (ETA/ETB) in the hemodynamic interaction between CSA and two NSAIDs, indomethacin and celecoxib. Tail-cuff plethysmography measurements showed that CSA (20 mg kg(-1) day(-1), 10 days) increased systolic blood pressure (SBP) and heart rate (HR). CSA hypertension was associated with renal perivascular fibrosis and divergent changes in immunohistochemical signals of renal arteriolar ETA (increases) and ETB (decreases) receptors. While these effects of CSA were preserved in rats treated concomitantly with indomethacin (5 mg kg(-1) day(-1)), celecoxib (10 mg kg(-1) day(-1)) abolished the pressor, tachycardic, and fibrotic effects of CSA and normalized the altered renal ETA/ETB receptor expressions. Selective blockade of ETA receptors by atrasentan (5 mg kg(-1) day(-1)) abolished the pressor response elicited by CSA or CSA plus indomethacin. Alternatively, BQ788 (ETB receptor blocker, 0.1 mg kg(-1) day(-1)) caused celecoxib-sensitive elevations in SBP and potentiated the pressor response evoked by CSA. Together, the improved renovascular fibrotic and endothelin receptor profile (ETA downregulation and ETB upregulation) mediate, at least partly, the protective effect of celecoxib against the hypertensive effect of CSA. Clinically, the use of celecoxib along with CSA in the management of arthritic conditions might provide hypertension-free regimen.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Egypt
| | - Rabab M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hanan M El-Gowelli
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
19
|
El-Gowelli HM, El-Mas MM. Central modulation of cyclosporine-induced hypertension. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:351-61. [DOI: 10.1007/s00210-014-1074-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022]
|
20
|
New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr Opin Nephrol Hypertens 2014; 23:135-42. [PMID: 24419369 DOI: 10.1097/01.mnh.0000441048.91041.3a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Nitric oxide (NO)-soluble guanylate cyclase (sGC)-dependent signaling mechanisms have a profound effect on the regulation of blood pressure (BP). In this review, we will discuss recent findings in the field that support the importance of sGC in the development of hypertension. RECENT FINDINGS The importance of sGC in BP regulation was highlighted by studies using genetically modified animal models, chemical stimulators/activators and inhibitors of the NO/sGC signaling pathway, and genetic association studies in humans. Many studies further support the role of NO/sGC in vasodilation and vascular dysfunction, which is underscored by the early clinical success of synthetic sGC stimulators for the treatment of pulmonary hypertension. Recent work has uncovered more details about the structural basis of sGC activation, enabling the development of more potent and efficient modulators of sGC activity. Finally, the mechanisms involved in the modulation of sGC by signaling gases other than NO, as well as the influence of redox signaling on sGC, have been the subject of several interesting studies. SUMMARY sGC is fast becoming an interesting therapeutic target for the treatment of vascular dysfunction and hypertension, with novel sGC stimulating/activating compounds as promising clinical treatment options.
Collapse
|
21
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, Rashed L, El-Mas MM. Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats. PLoS One 2014; 9:e98681. [PMID: 24870610 PMCID: PMC4037226 DOI: 10.1371/journal.pone.0098681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (Nω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine. Further, hemin alleviates the nicotine effect through a mechanism that is NOS/sGC but not CO or bilirubin-dependent.
Collapse
Affiliation(s)
- Mohamed A. Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M. El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Laila Rashed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Nasser SA, Elmallah AI, Sabra R, Khedr MM, El-Din MMM, El-Mas MM. Blockade of endothelin ET(A), but not thromboxane, receptors offsets the cyclosporine-evoked hypertension and interrelated baroreflex and vascular dysfunctions. Eur J Pharmacol 2014; 727:52-9. [PMID: 24486390 DOI: 10.1016/j.ejphar.2014.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 01/21/2023]
Abstract
The impairment of arterial baroreceptor and vasodilator functions are two major contributors to the hypertensive action of cyclosporine (CSA). In this study, in vivo and in vitro pharmacological studies were performed to investigate whether these effects of CSA are differentially modulated by endothelin and thromboxane signaling. The treatment of rats with CSA (25mg/kg/day i.p.) for 7 consecutive days caused significant increases in blood pressure (BP), attenuated reflex heart rate (HR) responses to vasopressor (phenylephrine, PE) and vasodepressor (sodium nitroprusside, SNP) agents, and reduced cumulative vasorelaxant responses elicited by acetylcholine (Ach, 1×10(-9)-1×10(-5)M) in PE-precontracted isolated aortas. These effects of CSA were blunted after concurrent i.p. administration of atrasentan (selective ETA blocker, 10mg/kg/day), but not terutroban (thromboxane receptor blocker, 10mg/kg/day). Moreover, atrasentan reversed the reductions in aortic protein expression of eNOS caused by CSA whereas terutroban was without effect. We also report that the favorable effect of atrasentan on CSA-evoked impairment in aortic Ach responsiveness disappeared in rats treated simultaneously with L-NAME (NOS inhibitor, 10mg/kg/day) but not BQ 788 (ETB receptor blocker, 0.1mg/kg/day) or indomethacin (cycloxygenase inhibitor, 5mg/kg/day). Together, the data implicate endothelin ETA receptors in baroreflex and vascular derangements which predispose to the hypertensive effect of CSA. Moreover, the facilitation of NOS, but not ETB receptors or cycloxygenase-derived prostanoids, signaling is pivotal for advantageous effect of atrasentan on the aortic CSA-Ach interaction.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology, Faculty of Pharmacy, Beirut Arab University, Lebanon
| | - Ahmed I Elmallah
- Department of Pharmacology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ramzi Sabra
- Department of Pharmacology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mohamed M Khedr
- Department of Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | | | - Mahmoud M El-Mas
- Department of Pharmacology, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
23
|
El-Mas MM, Mohy El-Din MM, Helmy MM, Omar AG. Redox imbalances incite the hypertensive, baroreflex, and autonomic effects of cyclosporine in rats. Eur J Pharmacol 2012; 694:82-8. [PMID: 22975291 DOI: 10.1016/j.ejphar.2012.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/27/2022]
Abstract
Previous studies including ours showed that cyclosporine (CSA) causes baroreflex dysfunction and hypertension. Here we tested the hypothesis that oxidative damage in central and peripheral tissues underlies the hypertensive, baroreflex and autonomic actions elicited by CSA in rats. We investigated the effects of individual and combined 7-day treatments with CSA (25 mg/kg/day, n=7) and 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol, superoxide dismutase mimetic, 100 mg/kg/day, n=7) on blood pressure, reflex heart rate responses to peripherally mediated pressor and depressor responses, and biomarkers of oxidative stress. CSA elevated blood pressure and reduced reflex bradycardic (phenylephrine) and tachycardic (sodium nitroptrusside) responses. The ability of muscarinic (atropine, 1 mg/kg i.v.) or β-adrenoceptor blockade (propranolol, 1 mg/kg i.v.) to reduce reflex heart rate responses was reduced in CSA-treated rats, suggesting the impairment by CSA of reflex cardiac autonomic control. Concurrent administration of tempol abolished CSA-induced hypertension and normalized the associated impairment in baroreflex gain and cardiac autonomic control. Tempol also reversed the CSA-induced increases in aortic and brainstem nitrite/nitrate and malondialdehyde (MDA) and decreases in aortic superoxide dismutase (SOD). These findings implicate oxidative stress in peripheral and central cardiovascular sites in the deleterious actions of CSA on blood pressure and baroreceptor control of heart rate.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | | | |
Collapse
|