1
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
2
|
Hashimoto K. Arketamine for cognitive impairment in psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2023; 273:1513-1525. [PMID: 36786865 PMCID: PMC9925943 DOI: 10.1007/s00406-023-01570-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Cognitive impairment has been observed in patients with various psychiatric disorders, including schizophrenia, major depressive disorder (MDD), and bipolar disorder (BD). Although modern therapeutic drugs can improve certain symptoms (i.e., psychosis, depression) in these patients, these drugs have not been found to improve cognitive impairment. The N-methyl-D-aspartate receptor antagonist (R,S)-ketamine has attracted attention as a rapidly acting antidepressant. In addition to its robust antidepressant effects, (R,S)-ketamine has been suggested to improve cognitive impairment in patients with MDD and BD, despite causing cognitive impairment in healthy control subjects. (R,S)-ketamine is a racemic mixture of equal amounts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Arketamine has been found to have more potent antidepressant-like actions than esketamine in rodents. Interestingly, arketamine, but not esketamine, has been suggested to improve phencyclidine-induced cognitive deficits in mice. Furthermore, arketamine has been suggested to ameliorate cognitive deficits in rodent offspring after maternal immune activation. In the current article, it is proposed that arketamine has therapeutic potential for treating cognitive impairment in patients with psychiatric disorders. Additionally, the potential role of the gut-microbiome-brain axis in cognitive impairment in psychiatric disorders is discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
3
|
AMPA receptors in schizophrenia: A systematic review of postmortem studies on receptor subunit expression and binding. Schizophr Res 2022; 243:98-109. [PMID: 35247795 DOI: 10.1016/j.schres.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/04/2021] [Accepted: 02/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND While altered expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor has been reported in postmortem studies of schizophrenia, these findings are inconsistent. Therefore, we aimed to systematically review postmortem studies that investigated AMPA receptor expressions in schizophrenia. METHODS A systematic literature search was conducted for postmortem studies that measured AMPA receptor subunit expressions or receptor bindings in schizophrenia compared to healthy individuals on February 3, 2021, using Medline and Embase. RESULTS A total of 39 relevant articles were identified from 1360 initial reports. The dorsolateral prefrontal cortex (DLPFC) was the most investigated region (15 studies), followed by the medial temporal lobe (8 studies). For the DLPFC, 4/15 studies (26.7%) showed increased AMPA receptor binding or subunit expression in patients with schizophrenia compared to that in controls, especially in GRIA1 and GRIA4, 2/15 studies (13.3%) reported a decrease, particularly in GRIA2, and 8/15 studies (56.7%) found no significant differences. A decreased expression or receptor binding was observed in 6/8 studies (75.0%) in the subregions of the hippocampus in patients with schizophrenia compared to that in controls, whereas the other two studies found no significant differences. CONCLUSION Published data have reported decreased subunit expression or receptor binding in the hippocampus in schizophrenia. These findings were inconsistent in other brain regions, which might be due to the heterogeneity of this population, various study design, physiological changes after death, and limited number of studies. Future in vivo studies are warranted to examine AMPA receptor expressions in human brains, together with their comprehensive clinical characterization.
Collapse
|
4
|
Chen ST, Hsieh CP, Lee MY, Chen LC, Huang CM, Chen HH, Chan MH. Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice. Biomed Pharmacother 2021; 144:112369. [PMID: 34715446 DOI: 10.1016/j.biopha.2021.112369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
As an N-methyl-D-aspartate (NMDA) receptor inhibitor, ketamine has become a popular recreational substance and currently is used to address treatment-resistant depression. Since heavy ketamine use is associated with persisting psychosis, cognitive impairments, and neuronal damage, the safety of ketamine treatment for depression should be concerned. The nutrient supplement betaine has been shown to counteract the acute ketamine-induced psychotomimetic effects and cognitive dysfunction through modulating NMDA receptors. This study aimed to determine whether the adjunctive or subsequent betaine treatment would improve the enduring behavioral disturbances and hippocampal synaptic abnormality induced by repeated ketamine exposure. Mice received ketamine twice daily for 14 days, either combined with betaine co-treatment or subsequent betaine post-treatment for 7 days. Thereafter, three-chamber social approach test, reciprocal social interaction, novel location/object recognition test, forced swimming test, and head-twitch response induced by serotonergic hallucinogen were monitored. Data showed that the enduring behavioral abnormalities after repeated ketamine exposure, including disrupted social behaviors, recognition memory impairments, and increased depression-like and hallucinogen-induced head-twitch responses, were remarkably improved by betaine co-treatment or post-treatment. Consistently, betaine protected and reversed the reduced hippocampal synaptic activity, such as decreases in field excitatory post-synaptic potentiation (fEPSP), long-term potentiation (LTP), and PSD-95 levels, after repeated ketamine treatment. These results demonstrated that both co-treatment and post-treatment with betaine could effectively prevent and reverse the adverse behavioral manifestations and hippocampal synaptic plasticity after repeated ketamine use, suggesting that betaine can be used as a novel adjunct therapy with ketamine for treatment-resistant depression and provide benefits for ketamine use disorders.
Collapse
Affiliation(s)
- Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, Taiwan
| | - Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yi Lee
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Min Huang
- Animal Behavior Core National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Animal Behavior Core National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi Uinversity, Taipei, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi Uinversity, Taipei, Taiwan; Research Center for Mind, Brain, and Learning, National Changchi University, 64, Section 2, Zhinan Road, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Alteration of NMDA receptor trafficking as a cellular hallmark of psychosis. Transl Psychiatry 2021; 11:444. [PMID: 34462417 PMCID: PMC8405679 DOI: 10.1038/s41398-021-01549-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
A dysfunction of the glutamatergic transmission, especially of the NMDA receptor (NMDAR), constitutes one of the main biological substrate of psychotic disorders, such as schizophrenia. The NMDAR signaling hypofunction, through genetic and/or environmental insults, would cause a neurodevelopmental myriad of molecular, cellular, and network alterations that persist throughout life. Yet, the mechanisms underpinning NMDAR dysfunctions remain elusive. Here, we compared the membrane trafficking of NMDAR in three gold-standard models of schizophrenia, i.e., patient's cerebrospinal fluids, genetic manipulations of susceptibility genes, and prenatal developmental alterations. Using a combination of single nanoparticle tracking, electrophysiological, biochemical, and behavioral approaches in rodents, we identified that the NMDAR trafficking in hippocampal neurons was consistently altered in all these different models. Artificial manipulations of the NMDAR surface dynamics with competing ligands or antibody-induced receptor cross-link in the developing rat brain were sufficient to regulate the adult acoustic startle reflex and compensate for an early pathological challenge. Collectively, we show that the NMDAR trafficking is markedly altered in all clinically relevant models of psychosis, opening new avenues of therapeutical strategies.
Collapse
|
6
|
Wang J, Yu W, Gao Q, Ju C, Wang K. Prefrontal inhibition of neuronal K v 7 channels enhances prepulse inhibition of acoustic startle reflex and resistance to hypofrontality. Br J Pharmacol 2020; 177:4720-4733. [PMID: 32839968 PMCID: PMC7520443 DOI: 10.1111/bph.15236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Dysfunction of the prefrontal cortex (PFC) is involved in the cognitive deficits in neuropsychiatric diseases, such as schizophrenia, characterized by deficient neurotransmission known as NMDA receptor hypofrontality. Thus, enhancing prefrontal activity may alleviate hypofrontality‐induced cognitive deficits. To test this hypothesis, we investigated the effect of forebrain‐specific suppression or pharmacological inhibition of native Kv7/KCNQ/M‐current on glutamatergic hypofrontality induced by the NMDA receptor antagonist MK‐801. Experimental Approach The forebrain‐specific inhibition of native M‐current was generated by transgenic expression, in mice, of a dominant‐negative pore mutant G279S of Kv7.2/KCNQ2 channels that suppresses channel function. A mouse model of cognitive impairment was established by single i.p. injection of 0.1 mg·kg−1 MK‐801. Mouse models of prepulse inhibition (PPI) of acoustic startle reflex and Y‐maze spontaneous alternation test were used for evaluation of cognitive behaviour. Hippocampal brain slice recordings of LTP were used to assess synaptic plasticity. Hippocampus and cortex were dissected for detecting protein expression using western blot analysis. Key Results Genetic suppression of Kv7 channel function in the forebrain or pharmacological inhibition of Kv7 channels by the specific blocker XE991 enhanced PPI and also alleviated MK‐801 induced cognitive decline. XE991 also attenuated MK‐801‐induced LTP deficits and increased basal synaptic transmissions. Western blot analysis revealed that inhibiting Kv7 channels resulted in elevation of pAkt1 and pGSK‐3β expressions in both hippocampus and cortex. Conclusions and Implications Both genetic and pharmacological inhibition of Kv7 channels alleviated PPI and cognitive deficits. Mechanistically, inhibition of Kv7 channels promotes synaptic transmission and activates Akt1/GSK‐3β signalling.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Qin Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Gerlai R. Evolutionary conservation, translational relevance and cognitive function: The future of zebrafish in behavioral neuroscience. Neurosci Biobehav Rev 2020; 116:426-435. [DOI: 10.1016/j.neubiorev.2020.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023]
|
8
|
Luo C, Wang X, Mao X, Huang H, Liu Y, Zhao J, Zhou H, Liu Z, Li X. Metformin attenuates antipsychotic-induced metabolic dysfunctions in MK801-induced schizophrenia-like rats. Psychopharmacology (Berl) 2020; 237:2257-2277. [PMID: 32588080 DOI: 10.1007/s00213-020-05524-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Second-generation antipsychotics are the first-line medications prescribed for schizophrenic patients; however, some of them, such as olanzapine and risperidone, may induce metabolic dysfunctions during short-term treatment. Metformin is an effective adjuvant that attenuates antipsychotic-induced metabolic dysfunctions (AIMD) in clinical practice. Whether metformin can reverse AIMD and whether metformin affects the therapeutic effects of antipsychotics in animal models of schizophrenia are questions that still need to be investigated. METHODS In this study, an animal model of schizophrenia was established by consecutive injections of MK801 during the neurodevelopmental period. In adulthood, different dosages of olanzapine or risperidone treatment were administered to the schizophrenia model animals for 14 days. Both therapeutic effects and metabolic adverse effects were measured by behavioral tests, histopathological tests, and biochemical tests. The coadministration of different doses of metformin with olanzapine or risperidone was used to evaluate the effects of metformin on both AIMD and the therapeutic effect of those antipsychotics. RESULTS The MK801-treated rats showed schizophrenia-like behavior and variations in the shape and volume of the hippocampus. Both olanzapine and risperidone reversed the MK801-induced behavioral abnormalities as the dosage increased; however, they degenerated the hepatocytes in the liver and influenced the blood lipid levels and blood glucose levels. The coadministration of metformin did not affect the therapeutic effects of olanzapine or risperidone on behavioral abnormalities but attenuated the metabolic dysfunctions induced by those antipsychotics. CONCLUSION Metformin attenuated the olanzapine- and risperidone-induced metabolic dysfunctions in MK801-induced schizophrenia-like rats without reducing the therapeutic effects of the antipsychotics.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Yong Liu
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China.
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol 2020; 31:511-523. [PMID: 32459694 DOI: 10.1097/fbp.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia is a serious, disabling, movement disorder associated with the ongoing use of antipsychotic medication. Current evidence regarding the pathophysiology of tardive dyskinesia is mainly based on preclinical animal models and is still not completely understood. The leading preclinical hypothesis of tardive dyskinesia development includes dopaminergic imbalance in the direct and indirect pathways of the basal ganglia, cholinergic deficiency, serotonin receptor disturbances, neurotoxicity, oxidative stress, and changes in synaptic plasticity. Although, the role of the glutamatergic system has been confirmed in preclinical tardive dyskinesia models it seems to have been neglected in recent reviews. This review focuses on the role and interactions of glutamate receptors with dopamine, acetylcholine, and serotonin in the neuropathology of tardive dyskinesia development. Moreover, preclinical and clinical results of the differentiated effectiveness of N-methyl-D-aspartate (NMDA) receptor antagonists are discussed with a special focus on antagonists that bind with the GluN2B subunit of NMDA receptors. This review also presents new combinations of drugs that are worth considering in the treatment of tardive dyskinesia.
Collapse
|
10
|
Retrograde and anterograde contextual fear amnesia induced by selective elimination of layer IV-Va neurons in the granular retrosplenial cortex (A29). Neurobiol Learn Mem 2020; 171:107229. [PMID: 32289450 DOI: 10.1016/j.nlm.2020.107229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Differences in cytoarchitectural organization and connectivity distinguishes granular (or area 29, A29) and dysgranular (or area 30, A30) subdivisions of the retrosplenial cortex (RSC). Although increasing evidence supports the participation of RSC in contextual fear learning and memory, the contribution of each RSC subdivision remains unknown. Here we used orchiectomized rats and intraperitoneal (i.p.) injections of saline (control) or 5 mg/kg MK801, to trigger selective degeneration of pyramidal neurons in layers IV-Va of A29 (A29MK801 neurons). These treatments were applied 3 days before or two days after contextual fear conditioning, and contextual fear memory was evaluated by scoring freezing in the conditioned context five days after training. Afterwards, brains were fixed and c-Fos and Egr-1 expression were assessed as surrogates of neuronal activity elicited by the recall in A29, A30 and in limbic areas. We found that eliminating A29MK801 neurons after training reduces conditioned freezing to 43.1 ± 9.9% respect to control rats. This was associated with a significant reduction of c-Fos and Egr-1 expression in A30, but not in other limbic areas. On the other hand, eliminating A29MK801 neurons before training caused a mild but significant reduction of conditioned freezing to 79.7 ± 6.8%, which was associated to enhanced expression of c-Fos in A29, A30 and CA1 field of hippocampus, while Egr-1 expression in caudomedial (CEnt) entorhinal cortex was not depressed as in control animals. These observations show that severeness of amnesia differs according to whether A29MK801 neurons were eliminated before or after conditioning, likely because loss of A29MK801 neurons after conditioning disrupt memory engram while their elimination before training allow recruitment of other neurons in A29 for partial compensation of contextual fear learning and memory. These observations add further support for the critical role of A29MK801 neurons in contextual fear learning and memory by connecting limbic structures with A30.
Collapse
|
11
|
Meier MA, Lemercier CE, Kulisch C, Kiss B, Lendvai B, Adham N, Gerevich Z. The novel antipsychotic cariprazine stabilizes gamma oscillations in rat hippocampal slices. Br J Pharmacol 2020; 177:1622-1634. [PMID: 31722437 PMCID: PMC7060372 DOI: 10.1111/bph.14923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 01/23/2023] Open
Abstract
Background and Purpose Gamma oscillations are fast rhythmic fluctuations of neuronal network activity ranging from 30 to 90 Hz that establish a precise temporal background for cognitive processes such as perception, sensory processing, learning, and memory. Alterations of gamma oscillations have been observed in schizophrenia and are suggested to play crucial roles in the generation of positive, negative, and cognitive symptoms of the disease. Experimental Approach In this study, we investigated the effects of the novel antipsychotic cariprazine, a D3‐preferring dopamine D3/D2 receptor partial agonist, on cholinergically induced gamma oscillations in rat hippocampal slices from treatment‐naïve and MK‐801‐treated rats, a model of acute first‐episode schizophrenia. Key Results The D3 receptor‐preferring agonist pramipexole effectively decreased the power of gamma oscillations, while the D3 receptor antagonist SB‐277011 had no effect. In treatment‐naïve animals, cariprazine did not modulate strong gamma oscillations but slightly improved the periodicity of non‐saturated gamma activity. Cariprazine showed a clear partial agonistic profile at D3 receptors at the network level by potentiating the inhibitory effects when the D3 receptor tone was low and antagonizing the effects when the tone was high. In hippocampal slices of MK‐801‐treated rats, cariprazine allowed stabilization of the aberrant increase in gamma oscillation power and potentiated resynchronization of the oscillations. Conclusion and Implications Data from this study indicate that cariprazine stabilizes pathological hippocampal gamma oscillations, presumably by its partial agonistic profile. The results demonstrate in vitro gamma oscillations as predictive biomarkers to study the effects of antipsychotics preclinically at the network level.
Collapse
Affiliation(s)
- Maria A Meier
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clement E Lemercier
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Kulisch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Nika Adham
- External Science and Innovation, Allergan Plc, Madison, New Jersey, USA
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Tanaka M, Kunugi A, Suzuki A, Suzuki N, Suzuki M, Kimura H. Preclinical characterization of AMPA receptor potentiator TAK-137 as a therapeutic drug for schizophrenia. Pharmacol Res Perspect 2019; 7:e00479. [PMID: 31086673 PMCID: PMC6507438 DOI: 10.1002/prp2.479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022] Open
Abstract
The downregulation of the glutamate system may be involved in positive, negative, and cognitive symptoms of schizophrenia. Through enhanced glutamate signaling, the activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, an ionotropic glutamate receptor, could be a new therapeutic strategy for schizophrenia. TAK-137 is a novel AMPA receptor potentiator with minimal agonistic activity; in this study, we used rodents and nonhuman primates to assess its potential as a drug for schizophrenia. At 10 mg kg-1 p.o., TAK-137 partially inhibited methamphetamine-induced hyperlocomotion in rats, and at 3, 10, and 30 mg kg-1 p.o., TAK-137 partially inhibited MK-801-induced hyperlocomotion in mice, suggesting weak effects on the positive symptoms of schizophrenia. At 0.1 and 0.3 mg kg-1 p.o., TAK-137 significantly ameliorated MK-801-induced deficits in the social interaction of rats, demonstrating potential improvement of impaired social functioning, which is a negative symptom of schizophrenia. The effects of TAK-137 were evaluated on multiple cognitive domains-attention, working memory, and cognitive flexibility. TAK-137 enhanced attention in the five-choice serial reaction time task in rats at 0.2 mg kg-1 p.o., and improved working memory both in rats and monkeys: 0.2 and 0.6 mg kg-1 p.o. ameliorated MK-801-induced deficits in the radial arm maze test in rats, and 0.1 mg kg-1 p.o. improved the performance of ketamine-treated monkeys in the delayed matching-to-sample task. At 0.1 and 1 mg kg-1 p.o., TAK-137 improved the cognitive flexibility of subchronic phencyclidine-treated rats in the reversal learning test. Thus, TAK-137-type AMPA receptor potentiators with low intrinsic activity may offer new therapies for schizophrenia.
Collapse
Affiliation(s)
- Maiko Tanaka
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Atsushi Suzuki
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Motohisa Suzuki
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| |
Collapse
|
13
|
Dubovyk V, Manahan-Vaughan D. Distinct Time-Course of Alterations of Groups I and II Metabotropic Glutamate Receptor and GABAergic Receptor Expression Along the Dorsoventral Hippocampal Axis in an Animal Model of Psychosis. Front Behav Neurosci 2019; 13:98. [PMID: 31139061 PMCID: PMC6519509 DOI: 10.3389/fnbeh.2019.00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Psychosis is a clinical state that encompasses a range of abnormal conditions, including distortions in sensory information processing and the resultant delusional thinking, emotional discordance and cognitive impairments. Upon developing this condition, the rate at which cognitive and behavioral deteriorations progress steadily increases suggesting an active contribution of the first psychotic event to the progression of structural and functional abnormalities and disease establishment in diagnosed patients. Changes in GABAergic and glutamatergic function, or expression, in the hippocampus have been proposed as a key factor in the pathophysiology of psychosis. However, little is known as to the time-point of onset of putative changes, to what extent they are progressive, and their relation to disease stabilization. Here, we characterized the expression and distribution patterns of groups I and II metabotropic glutamate (mGlu) receptors and GABA receptors 1 week and 3 months after systemic treatment with an N-methyl-D-aspartate receptor (NMDAR) antagonist (MK801) that is used to model a psychosis-like state in adult rats. We found an early alteration in the expression of mGlu1, mGlu2/3, and GABAB receptors across the hippocampal dorsoventral and transverse axes. This expanded to include an up-regulation of mGlu5 levels across the entire CA1 region and a reduction in GABAB expression, as well as GAD67-positive interneurons particularly in the dorsal hippocampus that appeared 3 months after treatment. Our findings indicate that a reduction of excitability may occur in the hippocampus soon after first-episode psychosis. This changes, over time, into increased excitability. These hippocampus-specific alterations are likely to contribute to the pathophysiology and stabilization of psychosis.
Collapse
Affiliation(s)
- Valentyna Dubovyk
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
14
|
Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry 2018; 23:2066-2077. [PMID: 29158578 DOI: 10.1038/mp.2017.239] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022]
Abstract
Low doses of ketamine trigger rapid and lasting antidepressant effects after one injection in treatment-resistant patients with major depressive disorder. Modulation of AMPA receptors (AMPARs) in the hippocampus and prefrontal cortex is suggested to mediate the antidepressant action of ketamine and of one of its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK). We have examined whether ketamine and (2R,6R)-HNK affect glutamatergic transmission and plasticity in the mesolimbic system, brain regions known to have key roles in reward-motivated behaviors, mood and hedonic drive. We found that one day after the injection of a low dose of ketamine, long-term potentiation (LTP) in the nucleus accumbens (NAc) was impaired. Loss of LTP was maintained for 7 days and was not associated with an altered basal synaptic transmission mediated by AMPARs and N-methyl-D-aspartate receptors (NMDARs). Inhibition of mammalian target of rapamycin signaling with rapamycin did not prevent the ketamine-induced loss of LTP but inhibited LTP in saline-treated mice. However, ketamine blunted the increase in the phosphorylation of the GluA1 subunit of AMPARs at a calcium/calmodulin-dependent protein kinase II/protein kinase C site induced by an LTP induction protocol. Moreover, ketamine caused a persistent increased phosphorylation of GluA1 at a protein kinase A site. (2R,6R)-HNK also impaired LTP in the NAc. In dopaminergic neurons of the ventral tegmental area from ketamine- or (2R,6R)-HNK-treated mice, AMPAR-mediated responses were depressed, while those mediated by NMDARs were unaltered, which resulted in a reduced AMPA/NMDA ratio, a measure of long-term synaptic depression. These results demonstrate that a single injection of ketamine or (2R,6R)-HNK induces enduring alterations in the function of AMPARs and synaptic plasticity in brain regions involved in reward-related behaviors.
Collapse
|
15
|
Zafra F, Ibáñez I, Bartolomé-Martín D, Piniella D, Arribas-Blázquez M, Giménez C. Glycine Transporters and Its Coupling with NMDA Receptors. ADVANCES IN NEUROBIOLOGY 2018; 16:55-83. [PMID: 28828606 DOI: 10.1007/978-3-319-55769-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2. While GlyT2 and Asc-1 are neuronal proteins, GlyT1 and SNAT5 are mainly astrocytic, although neuronal forms of GlyT1 also exist. GlyT1 has attracted considerable interest from the medical community and the pharmaceutical industry since compelling evidence indicates a clear association with the functioning of NMDARs, whose activity is decreased in various psychiatric illnesses. By controlling extracellular glycine, transporter inhibitors might potentiate the activity of NMDARs without activating excitotoxic processes. Physiologically, GlyT1 is a central actor in the cross talk between glutamatergic, glycinergic, dopaminergic, and probably other neurotransmitter systems. Many of these relationships begin to be unraveled by studies performed in recent years using genetic and pharmacological models. These studies are also clarifying the interactions between glycine, glycine transporters, and other co-agonists of the glycine site of NMDARs like D-serine. These findings are also relevant to understand the pathophysiology of devastating diseases like schizophrenia, depression, anxiety, epilepsy, stroke, and chronic pain.
Collapse
Affiliation(s)
- Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Dubovyk V, Manahan-Vaughan D. Time-Dependent Alterations in the Expression of NMDA Receptor Subunits along the Dorsoventral Hippocampal Axis in an Animal Model of Nascent Psychosis. ACS Chem Neurosci 2018; 9:2241-2251. [PMID: 29634239 DOI: 10.1021/acschemneuro.8b00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Psychosis is a mental condition that is characterized by hallucinations, delusions, disordered thought, as well as socio-emotional and cognitive impairments. Once developed, it tends to progress into a chronic psychotic illness. Here, the duration of untreated psychosis plays a crucial role: the earlier the treatment begins, relative to the first episode of the disease, the better the patient's functional prognosis. To what extent the success of early interventions relate to progressive changes at the neurotransmitter receptor level is as yet unclear. In fact, very little is known as to how molecular changes develop, transform, and become established following the first psychotic event. One neurotransmitter receptor for which a specific role in psychosis has been discussed is the N-methyl-d-aspartate receptor (NMDAR). This receptor is especially important for information encoding in the hippocampus. The hippocampus is one of the loci of functional change in psychosis, to which a role in the pathophysiology of psychosis has been ascribed. Here, we examined whether changes in NMDAR subunit expression occur along the dorsoventral axis of the hippocampus 1 week and 3 months after systemic treatment with an NMDAR antagonist (MK801) that initiates a psychosis-like state in adult rats. We found early (1 week) upregulation of the GluN2B levels in the dorso-intermediate hippocampus and late (3 month) downregulation of GluN2A expression across the entire CA1 region. The ventral hippocampus did not exhibit subunit expression changes. These data suggest that a differing vulnerability of the hippocampal longitudinal axis may occur in response to MK801-treatment and provide a time-resolved view of the putative development of pathological changes of NMDAR subunit expression in the hippocampus that initiate with an emulated first episode and progress through to the chronic stabilization of a psychosis-like state in rodents.
Collapse
|
17
|
Borkar CD, Bharne AP, Nagalakshmi B, Sakharkar AJ, Subhedar NK, Kokare DM. Cocaine- and Amphetamine-Regulated Transcript Peptide (CART) Alleviates MK-801-Induced Schizophrenic Dementia-Like Symptoms. Neuroscience 2018; 375:94-107. [PMID: 29425773 DOI: 10.1016/j.neuroscience.2018.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
Exaggerated thoughts, diminished mood and impaired cognition are the hallmarks of the schizophrenia-like condition. These symptoms are attributed to the dysregulation of dopamine and glutamate signaling in the brain. Since cocaine- and amphetamine-regulated transcript peptide (CART) modulates actions of dopamine as well as glutamate, we tested the role of this peptide in MK-801-induced schizophrenic dementia-like condition. MK-801-treated rats were allowed to interact with conspecific juvenile and tested for short-term (30-min) and long-term (24-h) social memory acquisition and recall. While MK-801 impaired the social interaction with a juvenile, the behavior was restored in CART [intracerebroventricular (icv) or intra-ventral tegmental area (VTA)] pre-treated animals. This action of CART was blocked by SCH23390 (dopamine D1 receptor antagonist) administered directly into the prefrontal cortex (PFC). Application of neuronal tracer Di-I in the PFC retrogradely labeled dopamine cells of the VTA, which in turn seem to receive CARTergic innervation. A significant increase in CARTimmunoreactivity was evidenced in the VTA, PFC and accumbens of the animals allowed to interact with a juvenile. However, MK-801 treatment attenuated the peptide expression and induced social memory deficits. The schizophrenic dementia-like symptoms following antagonism of glutamatergic receptors may be attributed to the reduced dopamine activity in the mesocortical system. We suggest that CART may, positively modulate the dopamine system to alleviate cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Chandrashekhar D Borkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Ashish P Bharne
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - B Nagalakshmi
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, Maharashtra, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, Maharashtra, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India.
| |
Collapse
|
18
|
Donello JE, Banerjee P, Li YX, Guo YX, Yoshitake T, Zhang XL, Miry O, Kehr J, Stanton PK, Gross AL, Burgdorf JS, Kroes RA, Moskal JR. Positive N-Methyl-D-Aspartate Receptor Modulation by Rapastinel Promotes Rapid and Sustained Antidepressant-Like Effects. Int J Neuropsychopharmacol 2018; 22:247-259. [PMID: 30544218 PMCID: PMC6403082 DOI: 10.1093/ijnp/pyy101] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Modulation of glutamatergic synaptic transmission by N-methyl-D-aspartate receptors can produce rapid and sustained antidepressant effects. Rapastinel (GLYX-13), initially described as a N-methyl-D-aspartate receptor partial glycine site agonist, exhibits rapid antidepressant effect in rodents without the accompanying dissociative effects of N-methyl-D-aspartate receptor antagonists. METHODS The relationship between rapastinel's in vitro N-methyl-D-aspartate receptor pharmacology and antidepressant efficacy was determined by brain microdialysis and subsequent pharmacological characterization of therapeutic rapastinel concentrations in N-methyl-D-aspartate receptor-specific radioligand displacement, calcium mobilization, and medial prefrontal cortex electrophysiology assays. RESULTS Brain rapastinel concentrations of 30 to 100 nM were associated with its antidepressant-like efficacy and enhancement of N-methyl-D-aspartate receptor-dependent neuronal intracellular calcium mobilization. Modulation of N-methyl-D-aspartate receptors by rapastinel was independent of D-serine concentrations, and glycine site antagonists did not block rapastinel's effect. In rat medial prefrontal cortex slices, 100 nM rapastinel increased N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents and enhanced the magnitude of long-term potentiation without any effect on miniature EPSCs or paired-pulse facilitation responses, indicating postsynaptic action of rapastinel. A critical amino acid within the NR2 subunit was identified as necessary for rapastinel's modulatory effect. CONCLUSION Rapastinel brain concentrations associated with antidepressant-like activity directly enhance medial prefrontal cortex N-methyl-D-aspartate receptor activity and N-methyl-D-aspartate receptor-mediated synaptic plasticity in vitro. At therapeutic concentrations, rapastinel directly enhances N-methyl-D-aspartate receptor activity through a novel site independent of the glycine coagonist site. While both rapastinel and ketamine physically target N-methyl-D-aspartate receptors, the 2 molecules have opposing actions on N-methyl-D-aspartate receptors. Modest positive modulation of N-methyl-D-aspartate receptors by rapastinel represents a novel pharmacological approach to promote well-tolerated, rapid, and sustained improvements in mood disorders.
Collapse
Affiliation(s)
- John E Donello
- Allergan, Plc, Irvine, California,Correspondence: John Donello, PhD, 2525 Dupont Dr., Irvine, CA 92612.
| | | | | | | | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Omid Miry
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Pronexus Analytical AB, Bromma, Sweden
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | | | - Jeffery S Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| | - Roger A Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| |
Collapse
|
19
|
Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology 2017; 390:146-158. [PMID: 28916327 DOI: 10.1016/j.tox.2017.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes.
Collapse
|
20
|
Abstract
Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepressant have spurred great interest in understanding ketamine's actions at molecular, cellular, and network levels. Although ketamine has unequivocal uncompetitive inhibitory effects on N-methyl-d-aspartate receptors (NMDARs) and may preferentially alter the function of NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its mood enhancing actions. In this viewpoint, we examine the evolving literature on ketamine supporting NMDARs as important triggers for certain psychiatric effects and the possibility that the antidepressant trigger is unrelated to NMDARs. The rapidly evolving story of ketamine offers great hope for untangling and treating the biology of both depressive and psychotic illnesses.
Collapse
|
21
|
Kalweit AN, Amanpour-Gharaei B, Colitti-Klausnitzer J, Manahan-Vaughan D. Changes in Neuronal Oscillations Accompany the Loss of Hippocampal LTP that Occurs in an Animal Model of Psychosis. Front Behav Neurosci 2017; 11:36. [PMID: 28337131 PMCID: PMC5340772 DOI: 10.3389/fnbeh.2017.00036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
The first-episode of psychosis is followed by a transient time-window of ca. 60 days during which therapeutic interventions have a higher likelihood of being effective than interventions that are started with a greater latency. This suggests that, in the immediate time-period after first-episode psychosis, functional changes occur in the brain that render it increasingly resistant to intervention. The precise mechanistic nature of these changes is unclear, but at the cognitive level, sensory and hippocampus-based dysfunctions become increasingly manifest. In an animal model of first-episode psychosis that comprises acute treatment of rats with the irreversible N-methyl-D-aspartate receptor (NMDAR)-antagonist, MK801, acute but also chronic deficits in long-term potentiation (LTP) and spatial memory occur. Neuronal oscillations, especially in the form of information transfer through θ and γ frequency oscillations are an intrinsic component of normal information processing in the hippocampus. Changes in θ-γ coupling and power are known to accompany deficits in hippocampal plasticity. Here, we examined whether changes in δ, θ, α, β and γ oscillations, or θ-γ coupling accompany the chronic loss of LTP that is observed in the MK801-animal model of psychosis. One and 4 weeks after acute systemic treatment of adult rats with MK801, a potent loss of hippocampal in vivo LTP was evident compared to vehicle-treated controls. Overall, the typical pattern of θ-γ oscillations that are characteristic for the successful induction of LTP was altered. In particular, θ-power was lower and an uncoupling of θ-γ oscillations was evident in MK801-treated rats. The alterations in network oscillations that accompany LTP deficits in this animal model may comprise a mechanism through which disturbances in sensory information processing and hippocampal function occur in psychosis. These data suggest that the hippocampus is likely to comprise a very early locus of functional change after instigation of a first-episode psychosis-like state in rodents.
Collapse
Affiliation(s)
- Alexander N Kalweit
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | - Bezhad Amanpour-Gharaei
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | | | | |
Collapse
|
22
|
Pinacho R, Vila E, Prades R, Tarragó T, Castro E, Ferrer I, Ramos B. The glial phosphorylase of glycogen isoform is reduced in the dorsolateral prefrontal cortex in chronic schizophrenia. Schizophr Res 2016; 177:37-43. [PMID: 27156240 DOI: 10.1016/j.schres.2016.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Reduced glutamatergic activity and energy metabolism in the dorsolateral prefrontal cortex (DLPFC) have been described in schizophrenia. Glycogenolysis in astrocytes is responsible for providing neurons with lactate as a transient energy supply helping to couple glutamatergic neurotransmission and glucose utilization in the brain. This mechanism could be disrupted in schizophrenia. The aim of this study was to explore whether the protein levels of the astrocyte isoform of glycogen phosphorylase (PYGM), key enzyme of glycogenolysis, and the isoform A of Ras-related C3 botulinum toxin substrate 1 (RAC1), a kinase that regulates PYGM activity, are altered in the postmortem DLPFC of chronic schizophrenia patients (n=23) and matched controls (n=23). We also aimed to test NMDAR blockade effect on these proteins in the mouse cortex and cortical astrocytes and antipsychotic treatments in rats. Here we report a reduction in PYGM and RAC1 protein levels in the DLPFC in schizophrenia. We found that treatment with the NMDAR antagonist dizocilpine in mice as a model of psychosis increased PYGM and reduced RAC1 protein levels. The same result was observed in rat cortical astroglial-enriched cultures. 21-day haloperidol treatment increased PYGM levels in rats. These results show that PYGM and RAC1 are altered in the DLPFC in chronic schizophrenia and are controlled by NMDA signalling in the rodent cortex and cortical astrocytes suggesting an altered NMDA-dependent glycogenolysis in astrocytes in schizophrenia. Together, this study provides evidence of a NMDA-dependent transient local energy deficit in neuron-glia crosstalk in schizophrenia, contributing to energy deficits of the disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Elia Vila
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Elena Castro
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED, Feixa Llarga s/n, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain.
| |
Collapse
|
23
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|
24
|
Horvath G, Kekesi G, Petrovszki Z, Benedek G. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science. PLoS One 2015; 10:e0143751. [PMID: 26629908 PMCID: PMC4667881 DOI: 10.1371/journal.pone.0143751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| | - Gabriella Kekesi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zita Petrovszki
- Institute of Physical Education and Sport Medicine, Juhász Gyula Faculty of Education, University of Szeged, Szeged, Hungary
| | - Gyorgy Benedek
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
26
|
Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 2015; 167:98-107. [PMID: 25583246 PMCID: PMC4724170 DOI: 10.1016/j.schres.2014.12.026] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-d-aspartate receptor (NMDAR) function. By highlighting postmortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Samuel M. Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donald C. Goff
- Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Michael M. Halassa
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
,Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,To whom correspondence should be addressed:
| |
Collapse
|
27
|
Iwamoto T, Ouchi Y. Emerging evidence of insulin-like growth factor 2 as a memory enhancer: a unique animal model of cognitive dysfunction with impaired adult neurogenesis. Rev Neurosci 2015; 25:559-74. [PMID: 24778346 DOI: 10.1515/revneuro-2014-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022]
Abstract
In the current aging society, cognitive dysfunction is one of the most serious issues that should be urgently resolved. It also affects a wide range of age groups harboring neurological and psychiatric disorders, such as Alzheimer's disease and schizophrenia. Although the molecular mechanism of memory impairment still remains to be determined, neuronal loss and dysfunction has been revealed to mainly attribute to its pathology. The discovery of neural stem cells in the adult brain that are proliferating and able to generate functional neurons has given rise to the idea that neuronal loss could be rescued by manipulating endogenous neural progenitor and stem cells. To this end, we must characterize them in detail and their developmental programming must be better understood. A growing body of evidence has indicated that insulin-like peptides are involved in learning and memory and maintenance of neural progenitor and stem cells, and clinical trials of insulin as a memory enhancer have begun. In contrast to the expectation of insulin and IGF1, the roles of IGF2 in cognitive ability have been poorly understood. However, recent evidence demonstrated in rodents suggests that IGF2 may play a pivotal role in adult neurogenesis and cognitive function. Here, we would like to review the rapidly growing world of IGF2 in cognitive neuroscience and introduce the evidence that its deficit is indeed involved in the impairment of the hippocampal neurogenesis and cognitive dysfunction in the model mouse of 22q11.2 deletion syndrome, which deletes Dgcr8, a critical gene for microRNA processing.
Collapse
|
28
|
Grüter T, Wiescholleck V, Dubovyk V, Aliane V, Manahan-Vaughan D. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis. Front Behav Neurosci 2015; 9:117. [PMID: 26042007 PMCID: PMC4438226 DOI: 10.3389/fnbeh.2015.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.
Collapse
Affiliation(s)
- Thomas Grüter
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| | | | - Valentyna Dubovyk
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | - Verena Aliane
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
29
|
Nomura T, Oyamada Y, Fernandes HB, Remmers CL, Xu J, Meltzer HY, Contractor A. Subchronic phencyclidine treatment in adult mice increases GABAergic transmission and LTP threshold in the hippocampus. Neuropharmacology 2015; 100:90-7. [PMID: 25937215 DOI: 10.1016/j.neuropharm.2015.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 01/24/2023]
Abstract
Repeated administration of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) to rodents causes long-lasting deficits in cognition and memory, and has effects on behaviors that have been suggested to be models of the cognitive impairment associated with schizophrenia (CIAS). Despite this being a widely studied animal model, little is known about the long lasting changes in synapses and circuits that underlie the altered behaviors. Here we examined synaptic transmission ex-vivo in the hippocampus of mice after a subchronic PCP (scPCP) administration regime. We found that after at least one week of drug free washout period when mice have impaired cognitive function, the threshold for long-term potentiation (LTP) of CA1 excitatory synapses was elevated. This elevated LTP threshold was directly related to increased inhibitory input to CA1 pyramidal cells through increased activity of GABAergic neurons. These results suggest repeated PCP administration causes a long-lasting metaplastic change in the inhibitory circuits in the hippocampus that results in impaired LTP, and could contribute to the deficits in hippocampal-dependent memory in PCP-treated mice. Changes in GABA signaling have been described in patients with schizophrenia, therefore our results support using scPCP as a model of CIAS. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yoshihiro Oyamada
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Herman B Fernandes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christine L Remmers
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Wright C, Calhoun VD, Ehrlich S, Wang L, Turner JA, Bizzozero NIP. Meta gene set enrichment analyses link miR-137-regulated pathways with schizophrenia risk. Front Genet 2015; 6:147. [PMID: 25941532 PMCID: PMC4403556 DOI: 10.3389/fgene.2015.00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/27/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A single nucleotide polymorphism (SNP) within MIR137, the host gene for miR-137, has been identified repeatedly as a risk factor for schizophrenia. Previous genetic pathway analyses suggest that potential targets of this microRNA (miRNA) are also highly enriched in schizophrenia-relevant biological pathways, including those involved in nervous system development and function. METHODS In this study, we evaluated the schizophrenia risk of miR-137 target genes within these pathways. Gene set enrichment analysis of pathway-specific miR-137 targets was performed using the stage 1 (21,856 subjects) schizophrenia genome wide association study data from the Psychiatric Genomics Consortium and a small independent replication cohort (244 subjects) from the Mind Clinical Imaging Consortium and Northwestern University. RESULTS Gene sets of potential miR-137 targets were enriched with variants associated with schizophrenia risk, including target sets involved in axonal guidance signaling, Ephrin receptor signaling, long-term potentiation, PKA signaling, and Sertoli cell junction signaling. The schizophrenia-risk association of SNPs in PKA signaling targets was replicated in the second independent cohort. CONCLUSIONS These results suggest that these biological pathways may be involved in the mechanisms by which this MIR137 variant enhances schizophrenia risk. SNPs in targets and the miRNA host gene may collectively lead to dysregulation of target expression and aberrant functioning of such implicated pathways. Pathway-guided gene set enrichment analyses should be useful in evaluating the impact of other miRNAs and target genes in different diseases.
Collapse
Affiliation(s)
- Carrie Wright
- The Mind Research NetworkAlbuquerque, NM, USA
- Department of Neurosciences, University of New MexicoAlbuquerque, NM, USA
| | - Vince D. Calhoun
- The Mind Research NetworkAlbuquerque, NM, USA
- Department of Neurosciences, University of New MexicoAlbuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New MexicoAlbuquerque, NM, USA
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität DresdenDresden, Germany
- Department of Psychiatry, Harvard Medical School, Massachusetts General HospitalBoston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical SchoolCharlestown, MA, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Department of Radiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Jessica A. Turner
- The Mind Research NetworkAlbuquerque, NM, USA
- Department of Psychology and Neuroscience Institute, Georgia State UniversityAtlanta, GA, USA
| | - Nora I. Perrone- Bizzozero
- Department of Neurosciences, University of New MexicoAlbuquerque, NM, USA
- Department of Psychiatry, University of New MexicoAlbuquerque, NM, USA
| |
Collapse
|
31
|
Takagi S, Balu DT, Coyle JT. Subchronic pharmacological and chronic genetic NMDA receptor hypofunction differentially regulate the Akt signaling pathway and Arc expression in juvenile and adult mice. Schizophr Res 2015; 162:216-21. [PMID: 25592804 PMCID: PMC4339465 DOI: 10.1016/j.schres.2014.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
NMDA receptor (NMDAR) hypofunction is a compelling hypothesis for the pathophysiology of schizophrenia, because in part, NMDAR antagonists cause symptoms in healthy adult subjects that resemble schizophrenia. Therefore, NMDAR antagonists have been used as a method to induce NMDAR hypofunction in animals as a pharmacological model of schizophrenia. Serine racemase-null mutant (SR-/-) mice display constitutive NMDAR hypofunction due to the lack of d-serine. SR-/- mice have deficits in tropomyosin-related kinase receptor (TrkB)/Akt signaling and activity regulated cytoskeletal protein (Arc) expression, which mirror what is observed in schizophrenia. Thus, we analyzed these signaling pathways in MK801 sub-chronically (0.15mg/kg; 5days) treated adult wild-type mice. We found that in contrast to SR-/- mice, the activated states of downstream signaling molecules, but not TrkB, increased in MK801 treated mice. Furthermore, there is an age-dependent change in the behavioral reaction of people to NMDAR antagonists. We therefore administered the same dosing regimen of MK801 to juvenile mice and compared them to juvenile SR-/- mice. Our findings demonstrate that pharmacological NMDAR antagonism has different effects on TrkB/Akt signaling than genetically-induced NMDAR hypofunction. Given the phenotypic disparity between the MK801 model and schizophrenia, our results suggest that SR-/- mice more accurately reflect NMDAR hypofunction in schizophrenia.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | - Darrick T. Balu
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street Boston, Boston, MA, USA 02115
,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, USA 02478
| | - Joseph T. Coyle
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street Boston, Boston, MA, USA 02115
,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, USA 02478
,Corresponding author: Joseph T. Coyle, M.D., Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA. , Tel.: 617-855-2101, Fax: 617-855-2705
| |
Collapse
|
32
|
Xu K, Krystal JH, Ning Y, Chen DC, He H, Wang D, Ke X, Zhang X, Ding Y, Liu Y, Gueorguieva R, Wang Z, Limoncelli D, Pietrzak RH, Petrakis IL, Zhang X, Fan N. Preliminary analysis of positive and negative syndrome scale in ketamine-associated psychosis in comparison with schizophrenia. J Psychiatr Res 2015; 61:64-72. [PMID: 25560772 PMCID: PMC4445679 DOI: 10.1016/j.jpsychires.2014.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/02/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Studies of the effects of the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist, ketamine, have suggested similarities to the symptoms of schizophrenia. Our primary goal was to evaluate the dimensions of the Positive and Negative Syndrome Scale (PANSS) in ketamine users (acute and chronic) compared to schizophrenia patients (early and chronic stages). METHOD We conducted exploratory factor analysis for the PANSS from four groups: 135 healthy subject administrated ketamine or saline, 187 inpatients of ketamine abuse; 154 inpatients of early course schizophrenia and 522 inpatients of chronic schizophrenia. Principal component factor analyses were conducted to identify the factor structure of the PANSS. RESULTS Factor analysis yielded five factors for each group: positive, negative, cognitive, depressed, excitement or dissociation symptoms. The symptom dimensions in two schizophrenia groups were consistent with the established five-factor model (Wallwork et al., 2012). The factor structures across four groups were similar, with 19 of 30 symptoms loading on the same factor in at least 3 of 4 groups. The factors in the chronic ketamine group were more similar to the factors in the two schizophrenia groups rather than to the factors in the acute ketamine group. Symptom severities were significantly different across the groups (Kruskal-Wallis χ(2)(4) = 540.6, p < 0.0001). Symptoms in the two ketamine groups were milder than in the two schizophrenia groups (Cohen's d = 0.7). CONCLUSION Our results provide the evidence of similarity in symptom dimensions between ketamine psychosis and schizophrenia psychosis. The interpretations should be cautious because of potential confounding factors.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA,United States Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA,United States Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Yuping Ning
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Da Chun Chen
- Biological Psychiatry Center, Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Hongbo He
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Daping Wang
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xiaoyin Ke
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xifan Zhang
- Guangzhou Baiyun Mental Health Hospital, China
| | - Yi Ding
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Liu
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ralitza Gueorguieva
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Diana Limoncelli
- United States Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA,United States Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ismene L. Petrakis
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA,United States Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Xiangyang Zhang
- Biological Psychiatry Center, Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Ni Fan
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
33
|
Pinacho R, Valdizán EM, Pilar-Cuellar F, Prades R, Tarragó T, Haro JM, Ferrer I, Ramos B. Increased SP4 and SP1 transcription factor expression in the postmortem hippocampus of chronic schizophrenia. J Psychiatr Res 2014; 58:189-96. [PMID: 25175639 DOI: 10.1016/j.jpsychires.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/20/2022]
Abstract
Altered levels of transcription factor specificity protein 4 (SP4) and 1 (SP1) in the cerebellum, prefrontal cortex and/or lymphocytes have been reported in severe psychiatric disorders, including early psychosis, bipolar disorder, and chronic schizophrenia subjects who have undergone long-term antipsychotic treatments. SP4 transgenic mice show altered hippocampal-dependent psychotic-like behaviours and altered development of hippocampal dentate gyrus. Moreover, NMDAR activity regulates SP4 function. The aim of this study was to investigate SP4 and SP1 expression levels in the hippocampus in schizophrenia, and the possible effect of antipsychotics and NMDAR blockade on SP protein levels in rodent hippocampus. We analysed SP4 and SP1 expression levels in the postmortem hippocampus of chronic schizophrenia (n = 14) and control (n = 11) subjects by immunoblot and quantitative RT-PCR. We tested the effect of NMDAR blockade on SP factors in the hippocampus of mouse treated with an acute dose of MK801. We also investigated the effect of subacute treatments with haloperidol and clozapine on SP protein levels in the rat hippocampus. We report that SP4 protein and both SP4 and SP1 mRNA expression levels are significantly increased in the hippocampus in chronic schizophrenia. Likewise, acute treatment with MK801 increased both SP4 and SP1 protein levels in mouse hippocampus. In contrast, subacute treatment with haloperidol and clozapine did not significantly alter SP protein levels in rat hippocampus. These results suggest that SP4 and SP1 upregulation may be part of the mechanisms deregulated downstream of glutamate signalling pathways in schizophrenia and might be contributing to the hippocampal-dependent cognitive deficits of the disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Elsa M Valdizán
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Avda. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Fuencisla Pilar-Cuellar
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Avda. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Josep Maria Haro
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitario de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED. Feixa Llarga s/n, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain.
| |
Collapse
|
34
|
Lobellová V, Brichtová E, Petrásek T, Valeš K, Stuchlík A. Higher doses of (+)MK-801 (dizocilpine) induced mortality and procedural but not cognitive deficits in delayed testing in the active place avoidance with reversal on the Carousel. Physiol Res 2014; 64:269-75. [PMID: 25317686 DOI: 10.33549/physiolres.932832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia is a devastating disorder affecting 1 % of the world's population. An important role in the study of this disease is played by animal models. Since there is evidence that acute psychotic episodes can have consequences on later cognitive functioning, the present study has investigated the effects of a single systemic application of higher doses of (+)MK-801 (3 mg/kg and 5 mg/kg) to adult male Long-Evans rats from the Institute's breeding colony on delayed testing in the active place avoidance task with reversal on the Carousel (a rotating arena). Besides significant mortality due to the injections, a disruption of procedural functions in active place avoidance, after the dose 5 mg/kg was observed. It was concluded that Long-Evans rats from our breeding colony do not represent a suitable biomodel for studying the effects of single high-dose NMDA antagonists.
Collapse
Affiliation(s)
- V Lobellová
- Institute of Physiology CAS, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
35
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
36
|
Nerve growth factor and its receptor in schizophrenia. BBA CLINICAL 2014; 1:24-9. [PMID: 26675984 PMCID: PMC4633968 DOI: 10.1016/j.bbacli.2014.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/18/2023]
Abstract
Promising studies suggest that defects in synaptic plasticity detected in schizophrenia may be linked to neurodevelopmental and neurodegenerative abnormalities and contribute to disease-associated cognitive impairment. We aimed to clarify the role of the synaptic plasticity regulatory proteins, nerve growth factor (NGF) and its receptor (NGFR) in the pathogenesis of schizophrenia by comparative analysis of their blood levels and functional single nucleotide polymorphisms (SNPs) in genes encoding these proteins (NGF and NGFR) in schizophrenia-affected and healthy subjects. Relationships between the selected SNPs' genotypes and NGF and NGFR plasma levels were also assessed. Our results demonstrated a positive association between schizophrenia and the NGF rs6330 as well as the NGFR rs11466155 and rs2072446 SNPs. Also, a negative association between this disorder and NGF rs4839435 as well as NGFR rs734194 was found. In both, haloperidol-treated and antipsychotic-free patients decreased blood levels of the NGF and NGFR were found, and a positive interrelation between rs6330 and rs2072446 carriage and decreased NGF and NGFR levels, respectively, was revealed. In conclusion, our results demonstrate association of schizophrenia with the rs6330, rs4839435 and rs734194, rs11466155, rs2072446 as well as with the decreased blood levels of corresponding proteins. Our findings indicate the implication of alterations in NGFR and NGFR genes in schizophrenia, particularly, in defects of synaptic plasticity. Furthermore, the data obtained suggests that at least in Armenian population the NGF rs6330*T and NGFR rs11466155*T, rs2072446*T alleles might be nominated as risk factors, whereas the NGF rs4839435*A and NGFR rs734194*G alleles might be protective against developing schizophrenia. The NGF and NGFR functional polymorphisms in schizophrenia-affected and healthy subjects were studied. Blood plasma levels of these proteins were also evaluated. Decreased NGF and NGFR levels in schizophrenia patients were detected. The rs6330*T and rs2072446*T carriage was interrelated with low NGF and NGFR levels, respectively. The NGF rs6330*T and NGFR rs11466155*T, rs2072446*T alleles might be nominated as risk factors.
Collapse
|
37
|
Savage S, Ma D. The neurotoxicity of nitrous oxide: the facts and "putative" mechanisms. Brain Sci 2014; 4:73-90. [PMID: 24961701 PMCID: PMC4066238 DOI: 10.3390/brainsci4010073] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 02/03/2023] Open
Abstract
Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects.
Collapse
Affiliation(s)
- Sinead Savage
- Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK.
| | - Daqing Ma
- Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK.
| |
Collapse
|
38
|
Martinez-Martinez P, Molenaar PC, Losen M, Stevens J, Baets MHD, Szoke A, Honnorat J, Tamouza R, Leboyer M, Os JV, Rutten BPF. Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders. Front Genet 2013; 4:181. [PMID: 24065983 PMCID: PMC3778371 DOI: 10.3389/fgene.2013.00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/27/2013] [Indexed: 01/17/2023] Open
Abstract
Changes of voltage-gated ion channels and ligand-gated receptor channels caused by mutation or autoimmune attack are the cause of so-called channelopathies in the central and peripheral nervous system. We present the pathophysiology of channelopathies of the neuromuscular junction in terms of loss-of-function and gain-of-function principles. Autoantibodies generally have reduced access to the central nervous system, but in some cases this is enough to cause disease. A review is provided of recent findings implicating autoantibodies against ligand-activated receptor channels and potassium channels in psychiatric and neurological disorders, including schizophrenia and limbic encephalitis. The emergence of channelopathy-related neuropsychiatric disorders has implications for research and practice.
Collapse
Affiliation(s)
- Pilar Martinez-Martinez
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Maastricht, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|