1
|
Leiva-Salcedo E, Riquelme D, Huidobro-Toro JP, Coddou C. Copper Increases the Cooperative Gating of Rat P2X2a Receptor Channels. Pharmaceuticals (Basel) 2024; 17:1590. [PMID: 39770432 PMCID: PMC11678522 DOI: 10.3390/ph17121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: P2X receptor channels are widely expressed in the CNS, where they have multiple functions in health and disease. The rat P2X2a (rP2X2a) receptor channel is modulated by copper, an essential trace element that plays important roles in synaptic modulation and neurodegenerative disorders. Although essential extracellular amino acids that coordinate copper have been identified, the exact mechanism of copper-induced modulation has not been yet elucidated. Methods: We used HEK293T cells expressing rP2X2a channel(s) and performed outside-out single-channel and whole-cell recordings to explore copper's effects on rP2X2 currents and determine whether this metal can increase the cooperative gating of rP2X2a channel. Results: In whole-cell recordings and in patches containing 2 or 3 rP2X2a channels, copper enhanced the ATP-induced currents, significantly reducing the ATP EC50 and increasing the Hill coefficient. Moreover, copper increased the apparent Po in patches containing two or three channels. By contrast, in patches containing only one rP2X2a channel, we did not observe any significant changes in ATP EC50, the Hill coefficient, or Po. Conclusions: Copper modulates the gating of rP2X2a channels, enhancing interchannel cooperativity without altering single-channel conductance or Po. This novel regulatory mechanism could be relevant for understanding the role of P2X2 channels in physiological and pathological processes.
Collapse
Affiliation(s)
- Elias Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9170022, Chile; (E.L.-S.); (D.R.)
| | - Denise Riquelme
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9170022, Chile; (E.L.-S.); (D.R.)
| | - Juan Pablo Huidobro-Toro
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9170022, Chile; (E.L.-S.); (D.R.)
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
| |
Collapse
|
2
|
Luo HM, Ye JR, Pu FQ, Luo HL, Zhang WJ. Role and therapeutic target of P2X2/3 receptors in visceral pain. Neuropeptides 2023; 101:102355. [PMID: 37390743 DOI: 10.1016/j.npep.2023.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.
Collapse
Affiliation(s)
- Hong-Mei Luo
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Jia-Rong Ye
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Fan-Qin Pu
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Hong-Liang Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China.
| |
Collapse
|
3
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
4
|
Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, Church GM. Developmental barcoding of whole mouse via homing CRISPR. Science 2018; 361:eaat9804. [PMID: 30093604 PMCID: PMC6139672 DOI: 10.1126/science.aat9804] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
In vivo barcoding using nuclease-induced mutations is a powerful approach for recording biological information, including developmental lineages; however, its application in mammalian systems has been limited. We present in vivo barcoding in the mouse with multiple homing guide RNAs that each generate hundreds of mutant alleles and combine to produce an exponential diversity of barcodes. Activation upon conception and continued mutagenesis through gestation resulted in developmentally barcoded mice wherein information is recorded in lineage-specific mutations. We used these recordings for reliable post hoc reconstruction of the earliest lineages and investigation of axis development in the brain. Our results provide an enabling and versatile platform for in vivo barcoding and lineage tracing in a mammalian model system.
Collapse
Affiliation(s)
- Reza Kalhor
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kian Kalhor
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Leo Mejia
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kathleen Leeper
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
5
|
Abstract
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
Collapse
Affiliation(s)
| | - Christopher J Chang
- Departments of Chemistry, Berkeley, California 94720-1460; Molecular and Cell Biology, Berkeley, California 94720-1460; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720-1460; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
6
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
7
|
D'Ambrosi N, Rossi L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem Int 2015; 90:36-45. [PMID: 26187063 DOI: 10.1016/j.neuint.2015.07.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|