1
|
Harraz MM, Malla AP, Semenza ER, Shishikura M, Singh M, Hwang Y, Kang IG, Song YJ, Snowman AM, Cortés P, Karuppagounder SS, Dawson TM, Dawson VL, Snyder SH. A high-affinity cocaine binding site associated with the brain acid soluble protein 1. Proc Natl Acad Sci U S A 2022; 119:e2200545119. [PMID: 35412917 PMCID: PMC9169839 DOI: 10.1073/pnas.2200545119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cocaine exerts its stimulant effect by inhibiting dopamine (DA) reuptake, leading to increased dopamine signaling. This action is thought to reflect the binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share cocaine’s behavioral actions. Further, recent reports show more potent actions of the drug, implying the existence of a high-affinity receptor for cocaine. We now report high-affinity binding of cocaine associated with the brain acid soluble protein 1 (BASP1) with a dissociation constant (Kd) of 7 nM. Knocking down BASP1 in the striatum inhibits [3H]cocaine binding to striatal synaptosomes. Depleting BASP1 in the nucleus accumbens but not the dorsal striatum diminishes locomotor stimulation in mice. Our findings imply that BASP1 is a pharmacologically relevant receptor for cocaine.
Collapse
Affiliation(s)
- Maged M. Harraz
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adarsha P. Malla
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Maria Shishikura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Manisha Singh
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yun Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - In Guk Kang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Young Jun Song
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Pedro Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ted M. Dawson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Valina L. Dawson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
3
|
Young JW, Geyer MA, Halberstadt AL, van Enkhuizen J, Minassian A, Khan A, Perry W, Eyler LT. Convergent neural substrates of inattention in bipolar disorder patients and dopamine transporter-deficient mice using the 5-choice CPT. Bipolar Disord 2020; 22:46-58. [PMID: 31025493 PMCID: PMC6815232 DOI: 10.1111/bdi.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a debilitating psychiatric illness affecting 2%-5% of the population. Although mania is the cardinal feature of BD, inattention and related cognitive dysfunction are observed across all stages. Since cognitive dysfunction confers poor functional outcome in patients, understanding the relevant neural mechanisms remains key to developing novel-targeted therapeutics. METHODS The 5-choice continuous performance test (5C-CPT) is a mouse and fMRI-compatible human attentional task, requiring responding to target stimuli while inhibiting responding to nontarget stimuli, as in clinical CPTs. This task was used to delineate systems-level neural deficits in BD contributing to inattentive performance in human subjects with BD as well as mouse models with either parietal cortex (PC) lesions or reduced dopamine transporter (DAT) expression. RESULTS Mania BD participants exhibited severe 5C-CPT impairment. Euthymic BD patients exhibited modestly impaired 5C-CPT. High impulsivity BD subjects exhibited reduced PC activation during target and nontarget responding compared with healthy participants. In mice, bilateral PC lesions impaired both target and nontarget responding. In the DAT knockdown mouse model of BD mania, knockdown mice exhibited severely impaired 5C-CPT performance versus wildtype littermates. CONCLUSIONS These data support the role of the PC in inattention in BD-specifically regarding identifying the appropriate response to target vs nontarget stimuli. Moreover, the findings indicate that severely reduced DAT function/hyperdopaminergia recreates the attentional deficits observed in BD mania patients. Determining the contribution of DAT in the PC to attention may provide a future target for treatment development.
Collapse
Affiliation(s)
- Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Asma Khan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Lisa T. Eyler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
4
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b. eNeuro 2017; 4:eN-NWR-0089-17. [PMID: 28828398 PMCID: PMC5562297 DOI: 10.1523/eneuro.0089-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/27/2023] Open
Abstract
Cocaine exposure alters gene expression in the brain via methylation and acetylation of histones along with methylation of DNA. Recently, poly (ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation has been reported as an important regulator of cocaine-mediated gene expression. In this study, we report that the cellular microRNA “miR-125b” plays a key role for cocaine-induced PARP-1 expression. Acute and chronic cocaine exposure resulted in the downregulation of miR-125b concurrent with upregulation of PARP-1 in dopaminergic neuronal cells and nucleus accumbens (NAc) of mice but not in the medial prefrontal cortex (PFC) or ventral tegmental area (VTA). In silico analysis predicted a binding site of miR-125b in a conserved 3’-untranslated region (3’UTR) of the PARP-1 mRNA. Knockdown and overexpression studies showed that miR-125b levels negatively correlate with PARP-1 protein expression. Luciferase reporter assay using a vector containing the 3’UTR of PARP-1 mRNA confirmed regulation of PARP-1 by miR-125b. Specific nucleotide mutations within the binding site abrogated miR-125b’s regulatory effect on PARP-1 3’UTR. Finally, we established that downregulation of miR-125b and concurrent upregulation of PARP-1 is dependent on binding of cocaine to the dopamine transporter (DAT). Collectively, these results identify miR-125b as a post-transcriptional regulator of PARP-1 expression and establish a novel mechanism underlying the molecular effects of cocaine action.
Collapse
|
6
|
Recombinant Adeno-Associated Virus-mediated rescue of function in a mouse model of Dopamine Transporter Deficiency Syndrome. Sci Rep 2017; 7:46280. [PMID: 28417953 PMCID: PMC5394687 DOI: 10.1038/srep46280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Dopamine Transporter Deficiency Syndrome (DTDS) is a rare autosomal recessive disorder caused by loss-of-function mutations in dopamine transporter (DAT) gene, leading to severe neurological disabilities in children and adults. DAT-Knockout (DAT-KO) mouse is currently the best animal model for this syndrome, displaying functional hyperdopaminergia and neurodegenerative phenotype leading to premature death in ~36% of the population. We used DAT-KO mouse as model for DTDS to explore the potential utility of a novel combinatorial adeno-associated viral (AAV) gene therapy by expressing DAT selectively in DA neurons and terminals, resulting in the rescue of aberrant striatal DA dynamics, reversal of characteristic phenotypic and behavioral abnormalities, and prevention of premature death. These data indicate the efficacy of a new combinatorial gene therapy aimed at rescuing DA function and related phenotype in a mouse model that best approximates DAT deficiency found in DTDS.
Collapse
|