1
|
Hughes LE, Adams NE, Rouse MA, Naessens M, Shaw A, Murley AG, Cope TE, Holland N, Nesbitt D, Street D, Whiteside DJ, Rowe JB. GABAergic modulation of beta power enhances motor adaptation in frontotemporal lobar degeneration. Alzheimers Dement 2025; 21:e14531. [PMID: 39968697 PMCID: PMC7617437 DOI: 10.1002/alz.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025]
Abstract
INTRODUCTION We examined how abnormal prefrontal neurophysiology and changes in gamma-aminobutyric acid-ergic (GABAergic) neurotransmission contribute to behavioral impairments in disorders associated with frontotemporal lobar degeneration (FTLD). METHODS We recorded magnetoencephalography during an adaptive visuomotor task from 11 people with behavioral-variant frontotemporal dementia, 11 with progressive supranuclear palsy, and 20 age-matched controls. We used tiagabine, a gamma-aminobutyric acid (GABA) re-uptake inhibitor, as a pharmacological probe to assess the role of GABA during motor-related beta power changes. RESULTS Task impairments were associated with diminished movement-related beta power. Tiagabine facilitated partial recovery of behavioral impairments and neurophysiology, moderated by executive function, such that the greatest improvements were seen in those with higher cognitive scores. The right prefrontal cortex was revealed as a key site of drug interaction. DISCUSSION Behavioral and neurophysiological deficits can be mitigated by enhancement of GABAergic neurotransmission. Clinical trials are warranted to test for enduring clinical benefits from this restorative-psychopharmacology strategy. HIGHLIGHTS Event-related beta power changes during movement can be altered by the GABA reuptake inhibitor, tiagabine. In people with behavioral-variant frontotemporal dementia and progressive supranuclear palsy, tiagabine enhanced beta modulation and concurrently improved task performance, dependent on baseline cognition, and diagnosis. The effects of the drug suggest a GABA-dependent beta-related mechanism that underlies adaptive motor control. Restoring selective deficits in neurotransmission is a potential means to improve behavioral symptoms in patients with dementia.
Collapse
Affiliation(s)
- Laura E. Hughes
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Natalie E. Adams
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Matthew A. Rouse
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Michelle Naessens
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | | | - Alexander G. Murley
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - Thomas E. Cope
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - Negin Holland
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - David Nesbitt
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - Duncan Street
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - David J. Whiteside
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Cambridge University HospitalsCambridgeUK
| |
Collapse
|
2
|
Nutt DJ. Drug development in psychiatry: 50 years of failure and how to resuscitate it. Lancet Psychiatry 2025; 12:228-238. [PMID: 39952266 DOI: 10.1016/s2215-0366(24)00370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 02/17/2025]
Abstract
The past 50 years have seen remarkable advances in the science of medicine. The pharmacological treatments of disorders such as hypertension, immune disorders, and cancer are fundamentally different from those used in the 1970s, and are now more often based on disorder-specific pathologies. The same cannot be said for psychiatric medicines: despite remarkable advances in neuroscience, very few innovative treatments have been developed in this field since the 1970s. For depression, schizophrenia, anxiety disorders, and ADHD, pharmacological classes of medicines discovered through serendipity in the 1950s are still used despite hundreds of billions of US dollars being spent on drug discovery attempts based on new neuroscience targets. This Personal View presents my opinion on the reasons innovation in psychiatric treatment has not progressed as well as in other disorders. As a researcher in the field, I offer suggestions as to how this situation must be rectified soon, as by most analyses mental illness is becoming a major health burden globally. Most of my evidence is referenced, but where I have unpublished knowledge gained from consulting with pharmaceutical companies, it is presented as an opinion.
Collapse
Affiliation(s)
- David J Nutt
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
3
|
Houlgreave MS, Dyke K, Berrington A, Jackson SR. Investigating Neurometabolite Changes in Response to Median Nerve Stimulation. Brain Behav 2025; 15:e70250. [PMID: 39779218 PMCID: PMC11710890 DOI: 10.1002/brb3.70250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Rhythmic median nerve stimulation (MNS) at 10 Hz has been shown to cause a substantial reduction in tic frequency in individuals with Tourette syndrome. The mechanism of action is currently unknown but is hypothesized to involve entrainment of oscillations within the sensorimotor cortex. OBJECTIVE We used functional magnetic resonance spectroscopy (fMRS) to explore the dynamic effects of MNS on neurometabolite concentrations. METHODS Here, we investigated the effects of rhythmic and arrhythmic 10 Hz MNS on glutamate (Glu) and GABA concentrations in the contralateral sensorimotor cortex in 15 healthy controls, using a blocked fMRS design. We used a Mescher-Garwood-semi-localized by adiabatic selective refocusing (MEGA-sLASER) sequence at 7 T. RESULTS Our results show no difference in the difference-from-baseline measures between the two stimulation conditions. Looking at the effect of MNS over both conditions there is a trend for an initial increase in Glu/tCr (total creatine) followed by a decrease over time, whereas GABA/tCr decreased during each stimulation block. CONCLUSIONS These results suggest that despite entrainment of oscillations during rhythmic MNS, there are no significant differences in the tonic neuromodulatory effects of rhythmic and arrhythmic stimulation. The reduction in Glu over the course of stimulation may reflect a decrease in the glutamatergic firing due to adaptation. This may make it less likely that an involuntary movement is generated during continuous stimulation.
Collapse
Affiliation(s)
- Mairi S. Houlgreave
- School of PsychologyUniversity of Nottingham University ParkNottinghamUK
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of Nottingham University ParkNottinghamUK
| | - Katherine Dyke
- School of PsychologyUniversity of Nottingham University ParkNottinghamUK
| | - Adam Berrington
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of Nottingham University ParkNottinghamUK
| | - Stephen R. Jackson
- School of PsychologyUniversity of Nottingham University ParkNottinghamUK
- Institute of Mental Health, School of MedicineUniversity of Nottingham University ParkNottinghamUK
| |
Collapse
|
4
|
Chen L, He J, Zhang J, Wang Z, Zhang L, Gu B, Liu X, Ming D. Influence of Transcutaneous Vagus Nerve Stimulation on Motor Planning: A Resting-State and Task-State EEG Study. IEEE J Biomed Health Inform 2024; 28:1374-1385. [PMID: 37824310 DOI: 10.1109/jbhi.2023.3324085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) shows a potential regulatory role for motor planning. Still, existing research mainly focuses on behavioral studies, and the neural modulation mechanism needs to be clarified. Therefore, we designed a multi-condition (active or sham, pre or under, difficult or easy, left-hand or right-hand) motor planning experiment to explore the effect of online tVNS (i.e., tVNS and tasks synchronized). Twenty-eight subjects were recruited and randomly assigned to active and sham groups. Both groups performed the same tasks in the experiment and separately collected task-state EEG and 5-min eye-open resting-state EEG. The results showed that the changes in event-related potential (ERP) and movement-related cortical potential (MRCP) amplitudes were more significant for the left-hand difficult task (LD) under active-tVNS. According to the power spectrum results, active-tVNS significantly modulated the activities of the contralateral motor cortex at beta and gamma bands in the resting state. The functional connectivity based on partial directed coherence (PDC) showed significant changes in the parietal lobe after active-tVNS. These findings suggest that tVNS is a promising way to improve motor planning ability.
Collapse
|
5
|
Frohlich J, Crone JS, Mediano PAM, Toker D, Bor D. Editorial: Dissociations between neural activity and conscious state: a key to understanding consciousness. Front Hum Neurosci 2023; 17:1256168. [PMID: 37600551 PMCID: PMC10433896 DOI: 10.3389/fnhum.2023.1256168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Julia S. Crone
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Pedro A. M. Mediano
- Department of Computing, Imperial College London, London, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Frohlich J, Mediano PAM, Bavato F, Gharabaghi A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun Biol 2023; 6:654. [PMID: 37340024 DOI: 10.1038/s42003-023-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Low-frequency (<4 Hz) neural activity, particularly in the delta band, is generally indicative of loss of consciousness and cortical down states, particularly when it is diffuse and high amplitude. Remarkably, however, drug challenge studies of several diverse classes of pharmacological agents-including drugs which treat epilepsy, activate GABAB receptors, block acetylcholine receptors, or produce psychedelic effects-demonstrate neural activity resembling cortical down states even as the participants remain conscious. Of those substances that are safe to use in healthy volunteers, some may be highly valuable research tools for investigating which neural activity patterns are sufficient for consciousness or its absence.
Collapse
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
8
|
From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans. Transl Psychiatry 2022; 12:467. [PMID: 36344497 PMCID: PMC9640647 DOI: 10.1038/s41398-022-02218-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Brain function is a product of the balance between excitatory and inhibitory (E/I) brain activity. Variation in the regulation of this activity is thought to give rise to normal variation in human traits, and disruptions are thought to potentially underlie a spectrum of neuropsychiatric conditions (e.g., Autism, Schizophrenia, Downs' Syndrome, intellectual disability). Hypotheses related to E/I dysfunction have the potential to provide cross-diagnostic explanations and to combine genetic and neurological evidence that exists within and between psychiatric conditions. However, the hypothesis has been difficult to test because: (1) it lacks specificity-an E/I dysfunction could pertain to any level in the neural system- neurotransmitters, single neurons/receptors, local networks of neurons, or global brain balance - most researchers do not define the level at which they are examining E/I function; (2) We lack validated methods for assessing E/I function at any of these neural levels in humans. As a result, it has not been possible to reliably or robustly test the E/I hypothesis of psychiatric disorders in a large cohort or longitudinal patient studies. Currently available, in vivo markers of E/I in humans either carry significant risks (e.g., deep brain electrode recordings or using Positron Emission Tomography (PET) with radioactive tracers) and/or are highly restrictive (e.g., limited spatial extent for Transcranial Magnetic Stimulation (TMS) and Magnetic Resonance Spectroscopy (MRS). More recently, a range of novel Electroencephalography (EEG) features has been described, which could serve as proxy markers for E/I at a given level of inference. Thus, in this perspective review, we survey the theories and experimental evidence underlying 6 novel EEG markers and their biological underpinnings at a specific neural level. These cheap-to-record and scalable proxy markers may offer clinical utility for identifying subgroups within and between diagnostic categories, thus directing more tailored sub-grouping and, therefore, treatment strategies. However, we argue that studies in clinical populations are premature. To maximize the potential of prospective EEG markers, we first need to understand the link between underlying E/I mechanisms and measurement techniques.
Collapse
|
9
|
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:48. [PMID: 34824891 PMCID: PMC8588888 DOI: 10.5334/tohm.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous inhibitory neurotransmitter critical to the control of movement both cortically and subcortically. Modulation of GABA can alter the characteristic rest as well as movement-related oscillatory activity in the alpha (8-12 Hz), beta (13-30 Hz, and gamma (60-90 Hz) frequencies, but the specific mechanisms by which GABAergic modulation can modify these well-described changes remains unclear. Through pharmacologic GABAergic modulation and evaluation across the age spectrum, the contributions of GABA to these characteristic oscillatory activities are beginning to be understood. Here, we review how baseline GABA signaling plays a key role in motor networks and in cortical oscillations detected by scalp electroencephalography and magnetoencephalography. We also discuss the data showing specific alterations to baseline movement related oscillatory changes from pharmacologic intervention on GABAergic tone as well as with healthy aging. These data provide greater insight into the physiology of movement and may help improve future development of novel therapeutics for patients who suffer from movement disorders.
Collapse
|
10
|
Shaw AD, Chandler HL, Hamandi K, Muthukumaraswamy SD, Hammers A, Singh KD. Tiagabine induced modulation of oscillatory connectivity and activity match PET-derived, canonical GABA-A receptor distributions. Eur Neuropsychopharmacol 2021; 50:34-45. [PMID: 33957336 PMCID: PMC8415204 DOI: 10.1016/j.euroneuro.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/04/2022]
Abstract
As the most abundant inhibitory neurotransmitter in the mammalian brain, γ-aminobutyric acid (GABA) plays a crucial role in shaping the frequency and amplitude of oscillations, which suggests a role for GABA in shaping the topography of functional connectivity and activity. This study explored the effects of pharmacologically blocking the reuptake of GABA (increasing local concentrations) using the GABA transporter 1 (GAT1) blocker, tiagabine (15 mg). In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) recordings from 15 healthy individuals prior to, and at 1-, 3- and 5- hours post, administration of tiagabine and placebo. We quantified whole brain activity and functional connectivity in discrete frequency bands. Drug-by-session (2 × 4) analysis of variance in connectivity revealed interaction and main effects. Post-hoc permutation testing of each post-drug recording vs. respective pre-drug baseline revealed consistent reductions of a bilateral occipital network spanning theta, alpha and beta frequencies, across 1- 3- and 5- hour recordings following tiagabine only. The same analysis applied to activity revealed significant increases across frontal regions, coupled with reductions in posterior regions, across delta, theta, alpha and beta frequencies. Crucially, the spatial distribution of tiagabine-induced changes overlap with group-averaged maps of the distribution of GABAA receptors, from flumazenil (FMZ-VT) PET, demonstrating a link between GABA availability, GABAA receptor distribution, and low-frequency network oscillations. Our results indicate that the relationship between PET receptor distributions and MEG effects warrants further exploration, since elucidating the nature of this relationship may uncover electrophysiologically-derived maps of oscillatory activity as sensitive, time-resolved, and targeted receptor-mapping tools for pharmacological imaging.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales.
| | - Hannah L Chandler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London SE1 7EH, United States
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| |
Collapse
|
11
|
Berro LF, Overton JS, Reeves-Darby JA, Rowlett JK. Alprazolam-induced EEG spectral power changes in rhesus monkeys: a translational model for the evaluation of the behavioral effects of benzodiazepines. Psychopharmacology (Berl) 2021; 238:1373-1386. [PMID: 33594504 PMCID: PMC8177744 DOI: 10.1007/s00213-021-05793-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Benzodiazepines induce electroencephalography (EEG) changes in rodents and humans that are associated with distinct behavioral effects and have been proposed as quantitative biomarkers for GABAA receptor modulation. Specifically, central EEG beta and occipital EEG delta activity have been associated with anxiolysis and sedation, respectively. The extent to which nonhuman primates show the same dose- and topography-dependent effects remained unknown. OBJECTIVES We aimed at establishing a nonhuman primate model for the evaluation of benzodiazepine EEG pharmacology. METHODS Four adult male rhesus monkeys were prepared with fully implantable telemetry devices that monitored activity, peripheral body temperature, and contained two EEG (central and occipital), one electromyography (EMG), and one electrooculography channel. We investigated daytime alprazolam-induced changes in EEG spectral power, sleep-wake states, EMG activity, locomotor activity, and body temperature. Alprazolam (0.01-1.8 mg/kg, i.m.) or vehicle was administered acutely, and telemetry recording was conducted for 1 h. RESULTS Daytime alprazolam dose-dependently increased central EEG power (including beta activity), increased occipital EEG delta power, and decreased occipital EEG alpha, theta, and sigma power. There was an ~8-fold difference in the potency of alprazolam to increase central EEG beta vs. occipital EEG delta activity (based on relative EEG power). The highest dose, which increased both central EEG beta and occipital EEG delta relative power, induced sedative effects (increased time spent in N1 and N2 sleep stages) and decreased peripheral body temperature and locomotor activity. CONCLUSIONS Alprazolam induces dose- and topography-dependent EEG changes in rhesus monkeys and provides a valuable model for studying benzodiazepine pharmacology.
Collapse
Affiliation(s)
- Lais F. Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216,Corresponding Author: Lais F. Berro, Ph.D., Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216,
| | - John S. Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216
| | - Jaren A. Reeves-Darby
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216
| | - James K. Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216
| |
Collapse
|
12
|
Keute M, Wienke C, Ruhnau P, Zaehle T. Effects of transcutaneous vagus nerve stimulation (tVNS) on beta and gamma brain oscillations. Cortex 2021; 140:222-231. [PMID: 34015727 DOI: 10.1016/j.cortex.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/01/2022]
Abstract
Physiological and behavioral effects induced through transcutaneous vagus nerve stimulation (tVNS) are under scrutiny in a growing number of studies, yet its mechanisms of action remain poorly understood. One candidate mechanism is a modulation of γ-aminobutyric acid (GABA) transmission through tVNS. Two recent behavioral studies suggest that such a GABAergic effect might occur in a lateralized fashion, i.e., the GABA modulation might be stronger in the left than in the right brain hemisphere after tVNS applied to the left ear. Using magnetoencephalography (MEG), we tested for GABA-associated modulations in resting and event-related brain oscillations and for a lateralization of those effects in a sample of 41 healthy young adults. Our data provide substantial evidence against all hypotheses, i.e., we neither find effects of tVNS on oscillatory power nor a lateralization of effects.
Collapse
Affiliation(s)
- Marius Keute
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany.
| | - Christian Wienke
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg
| | - Philipp Ruhnau
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg
| | - Tino Zaehle
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg
| |
Collapse
|
13
|
Adams NE, Hughes LE, Rouse MA, Phillips HN, Shaw AD, Murley AG, Cope TE, Bevan-Jones WR, Passamonti L, Street D, Holland N, Nesbitt D, Friston K, Rowe JB. GABAergic cortical network physiology in frontotemporal lobar degeneration. Brain 2021; 144:2135-2145. [PMID: 33710299 PMCID: PMC8370432 DOI: 10.1093/brain/awab097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022] Open
Abstract
The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients’ GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials.
Collapse
Affiliation(s)
- Natalie E Adams
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Laura E Hughes
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Matthew A Rouse
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Holly N Phillips
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Alexander G Murley
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - W Richard Bevan-Jones
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Duncan Street
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Negin Holland
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - David Nesbitt
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| |
Collapse
|
14
|
Stock A, Pertermann M, Mückschel M, Beste C. High-dose ethanol intoxication decreases 1/f neural noise or scale-free neural activity in the resting state. Addict Biol 2020; 25:e12818. [PMID: 31368192 DOI: 10.1111/adb.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
Binge drinking is a frequent phenomenon in many western societies and has been associated with an increased risk of developing alcohol use disorder later in life. Yet, the effects of high-dose alcohol intoxication on neurophysiological processes are still quite poorly understood. This is particularly the case given that neurophysiological brain activity not only contains recurring (oscillatory) patterns of activity, but also a significant fraction of "scale-free" or arrhythmic dynamics referred to as 1/f type activity, pink noise, or 1/f neural noise. Neurobiological considerations suggest that it should be modulated by alcohol intoxication. To investigate this assumption, we collected resting state EEG data from n = 23 healthy young male subjects in a crossover design, where each subject was once tested sober and once tested while intoxicated (mean breath alcohol concentration of 1.1 permille ±0.2). Analyses of the 1/f neural dynamics showed that ethanol intoxication decreased resting state 1/f neural noise, as compared with a sober state. The effects were strongest when the eyes were closed and particularly reliable in the beta frequency band. Given that the dynamics of the beta band have been shown to strongly depend on GABAA receptor neural transmission, this finding nicely aligns with the fact that ethanol increases GABAergic signaling. The study reveals a currently unreported effect of binge drinking on neurophysiological dynamics, which likely revealed a higher sensitivity for ethanol effects than most commonly considered measures of power in neural oscillations. Implications and applicability of these findings are discussed.
Collapse
Affiliation(s)
- Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| | - Maik Pertermann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| |
Collapse
|
15
|
Effect of Zolpidem in the Aftermath of Traumatic Brain Injury: An MEG Study. Case Rep Neurol Med 2020; 2020:8597062. [PMID: 32257474 PMCID: PMC7109561 DOI: 10.1155/2020/8597062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
In the past two decades, many studies have shown the paradoxical efficacy of zolpidem, a hypnotic used to induce sleep, in transiently alleviating various disorders of consciousness such as traumatic brain injury (TBI), dystonia, and Parkinson's disease. The mechanism of action of this effect of zolpidem is of great research interest. In this case study, we use magnetoencephalography (MEG) to investigate a fully conscious, ex-coma patient who suffered from neurological difficulties for a few years due to traumatic brain injury. For a few years after injury, the patient was under medication with zolpidem that drastically improved his symptoms. MEG recordings taken before and after zolpidem showed a reduction in power in the theta-alpha (4–12 Hz) and lower beta (15–20 Hz) frequency bands. An increase in power after zolpidem intake was found in the higher beta/lower gamma (20–43 Hz) frequency band. Source level functional connectivity measured using weighted-phase lag index showed changes after zolpidem intake. Stronger connectivity between left frontal and temporal brain regions was observed. We report that zolpidem induces a change in MEG resting power and functional connectivity in the patient. MEG is an informative and sensitive tool to detect changes in brain activity for TBI.
Collapse
|
16
|
GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography. J Neurosci 2020; 40:1640-1649. [PMID: 31915255 DOI: 10.1523/jneurosci.1689-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain.
Collapse
|
17
|
Decreased directed functional connectivity in the psychedelic state. Neuroimage 2019; 209:116462. [PMID: 31857204 DOI: 10.1016/j.neuroimage.2019.116462] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/08/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Neuroimaging studies of the psychedelic state offer a unique window onto the neural basis of conscious perception and selfhood. Despite well understood pharmacological mechanisms of action, the large-scale changes in neural dynamics induced by psychedelic compounds remain poorly understood. Using source-localised, steady-state MEG recordings, we describe changes in functional connectivity following the controlled administration of LSD, psilocybin and low-dose ketamine, as well as, for comparison, the (non-psychedelic) anticonvulsant drug tiagabine. We compare both undirected and directed measures of functional connectivity between placebo and drug conditions. We observe a general decrease in directed functional connectivity for all three psychedelics, as measured by Granger causality, throughout the brain. These data support the view that the psychedelic state involves a breakdown in patterns of functional organisation or information flow in the brain. In the case of LSD, the decrease in directed functional connectivity is coupled with an increase in undirected functional connectivity, which we measure using correlation and coherence. This surprising opposite movement of directed and undirected measures is of more general interest for functional connectivity analyses, which we interpret using analytical modelling. Overall, our results uncover the neural dynamics of information flow in the psychedelic state, and highlight the importance of comparing multiple measures of functional connectivity when analysing time-resolved neuroimaging data.
Collapse
|
18
|
A Rapid Form of Offline Consolidation in Skill Learning. Curr Biol 2019; 29:1346-1351.e4. [PMID: 30930043 DOI: 10.1016/j.cub.2019.02.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
The brain strengthens memories through consolidation, defined as resistance to interference (stabilization) or performance improvements between the end of a practice session and the beginning of the next (offline gains) [1]. Typically, consolidation has been measured hours or days after the completion of training [2], but the same concept may apply to periods of rest that occur interspersed in a series of practice bouts within the same session. Here, we took an unprecedented close look at the within-seconds time course of early human procedural learning over alternating short periods of practice and rest that constitute a typical online training session. We found that performance did not markedly change over short periods of practice. On the other hand, performance improvements in between practice periods, when subjects were at rest, were significant and accounted for early procedural learning. These offline improvements were more prominent in early training trials when the learning curve was steep and no performance decrements during preceding practice periods were present. At the neural level, simultaneous magnetoencephalographic recordings showed an anatomically defined signature of this phenomenon. Beta-band brain oscillatory activity in a predominantly contralateral frontoparietal network predicted rest-period performance improvements. Consistent with its role in sensorimotor engagement [3], modulation of beta activity may reflect replay of task processes during rest periods. We report a rapid form of offline consolidation that substantially contributes to early skill learning and may extend the concept of consolidation to a time scale in the order of seconds, rather than the hours or days traditionally accepted.
Collapse
|
19
|
Darmani G, Bergmann TO, Zipser C, Baur D, Müller-Dahlhaus F, Ziemann U. Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. Hum Brain Mapp 2018; 40:1276-1289. [PMID: 30549127 DOI: 10.1002/hbm.24448] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/21/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) recorded by electroencephalography (EEG) are emergent noninvasive markers of neuronal excitability and effective connectivity in humans. However, the underlying physiology of these TMS-evoked EEG potentials (TEPs) is still heavily underexplored, impeding a broad application of TEPs to study pathology in neuropsychiatric disorders. Here we tested the effects of a single oral dose of three antiepileptic drugs with specific modes of action (carbamazepine, a voltage-gated sodium channel (VGSC) blocker; brivaracetam, a ligand to the presynaptic vesicle protein VSA2; tiagabine, a gamma-aminobutyric acid (GABA) reuptake inhibitor) on TEP amplitudes in 15 healthy adults in a double-blinded randomized placebo-controlled crossover design. We found that carbamazepine decreased the P25 and P180 TEP components, and brivaracetam the N100 amplitude in the nonstimulated hemisphere, while tiagabine had no effect. Findings corroborate the view that the P25 represents axonal excitability of the corticospinal system, the N100 in the nonstimulated hemisphere propagated activity suppressed by inhibition of presynaptic neurotransmitter release, and the P180 late activity particularly sensitive to VGSC blockade. Pharmaco-physiological characterization of TEPs will facilitate utilization of TMS-EEG in neuropsychiatric disorders with altered excitability and/or network connectivity.
Collapse
Affiliation(s)
- Ghazaleh Darmani
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Til O Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carl Zipser
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp JF, Muthukumaraswamy SD. Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation. Psychopharmacology (Berl) 2018; 235:3479-3493. [PMID: 30426183 DOI: 10.1007/s00213-018-5064-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study. METHODS We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal. RESULTS AND CONCLUSIONS Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| |
Collapse
|
21
|
Muthukumaraswamy SD, Liley DT. 1/f electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. Neuroimage 2018; 179:582-595. [PMID: 29959047 DOI: 10.1016/j.neuroimage.2018.06.068] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 02/01/2023] Open
Abstract
Neurophysiological recordings are dominated by arhythmical activity whose spectra can be characterised by power-law functions, and on this basis are often referred to as reflecting scale-free brain dynamics (1/fβ). Relatively little is known regarding the neural generators and temporal dynamics of this arhythmical behaviour compared to rhythmical behaviour. Here we used Irregularly Resampled AutoSpectral Analysis (IRASA) to quantify β, in both the high (5-100 Hz, βhf) and low frequency bands (0.1-2.5 Hz, βlf) in MEG/EEG/ECoG recordings and to separate arhythmical from rhythmical modes of activity, such as, alpha rhythms. In MEG/EEG/ECoG data, we demonstrate that oscillatory alpha power dynamically correlates over time with βhf and similarly, participants with higher rhythmical alpha power have higher βhf. In a series of pharmaco-MEG investigations using the GABA reuptake inhibitor tiagabine, the glutamatergic AMPA receptor antagonist perampanel, the NMDA receptor antagonist ketamine and the mixed partial serotonergic agonist LSD, a variety of effects on both βhf and βlf were observed. Additionally, strong modulations of βhf were seen in monkey ECoG data during general anaesthesia using propofol and ketamine. We develop and test a unifying model which can explain, the 1/f nature of electrophysiological spectra, their dynamic interaction with oscillatory rhythms as well as the sensitivity of 1/f activity to drug interventions by considering electrophysiological spectra as being generated by a collection of stochastically perturbed damped oscillators having a distribution of relaxation rates.
Collapse
Affiliation(s)
- Suresh D Muthukumaraswamy
- School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - David Tj Liley
- Centre for Human Psychopharmacology, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
22
|
Lozano-Soldevilla D. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Front Comput Neurosci 2018; 12:23. [PMID: 29670518 PMCID: PMC5893851 DOI: 10.3389/fncom.2018.00023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings.
Collapse
|
23
|
Durant CF, Paterson LM, Turton S, Wilson SJ, Myers JFM, Muthukumaraswamy S, Venkataraman A, Mick I, Paterson S, Jones T, Nahar LK, Cordero RE, Nutt DJ, Lingford-Hughes A. Using Baclofen to Explore GABA-B Receptor Function in Alcohol Dependence: Insights From Pharmacokinetic and Pharmacodynamic Measures. Front Psychiatry 2018; 9:664. [PMID: 30618857 PMCID: PMC6302106 DOI: 10.3389/fpsyt.2018.00664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background: The role of GABA-B neurotransmission in addiction has recently received increased attention, with clinical trials indicating that baclofen, a GABA-B receptor agonist, may reduce alcohol consumption, craving and promote abstinence. However, the optimal dose to treat alcohol dependence is unclear with patients requesting and tolerating much higher doses of baclofen, compared with other clinical uses. We assessed the pharmacokinetics and pharmacodynamics (PK/PD) of baclofen to provide insight into GABA-B sensitivity in this patient group, relative to controls. Methods: Male healthy volunteers (controls, n = 12) and abstinent alcohol dependent individuals (AD, n = 8) received single oral doses of baclofen or placebo in a 3-way crossover design. Controls received placebo/10 mg/60 mg baclofen in a randomized, double-blind design, AD received placebo/60 mg/90 mg baclofen in a single-blind design. PK/PD measures were recorded at baseline and multiple time-points up to 6 h post-dosing, including plasma baclofen, plasma growth hormone (GH), Subjective High Assessment Scale (SHAS) and biphasic alcohol effects scale (BAES). Repeated measures ANOVA analysis explored "change from baseline" dose, time, group, and interaction effects, t-tests compared peak effects. Results: Dose-dependent effects of baclofen on PK and PD measures were observed in both control and AD groups. Whilst there were no significant group differences in any baclofen PK parameters (t 1/2, t max , C max , AUC), marked differences in PD effects were clearly evident. In controls, 60 mg baclofen significantly increased total SHAS and BAES scores, and significantly increased plasma GH levels compared with placebo, with peak effects at 60-120 min, in line with its PK profile. In AD, 60 mg baclofen had limited effects on these parameters; SHAS scores, BAES scores and plasma GH levels were significantly blunted compared with controls (significant group*time interactions P = 0.0014, 0.0015 and P < 0.0001, respectively). Conclusions: Our study shows blunted sensitivity to baclofen in AD relative to controls, with no difference in PK suggesting a lower GABA-B receptor sensitivity. This may explain why higher baclofen doses are requested and tolerated in the treatment of alcohol dependence. Our data has implications for choice of dose in future clinical trials in AD and possibly other substances of dependence.
Collapse
Affiliation(s)
- Claire F Durant
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Louise M Paterson
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Sam Turton
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Susan J Wilson
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - James F M Myers
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | | | - Ashwin Venkataraman
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Inge Mick
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Susan Paterson
- Centre for Brain Science, University of Auckland, Auckland, New Zealand
| | - Tessa Jones
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Limon K Nahar
- Centre for Brain Science, University of Auckland, Auckland, New Zealand
| | - Rosa E Cordero
- Centre for Brain Science, University of Auckland, Auckland, New Zealand
| | - David J Nutt
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Division of Brain Sciences, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Routley BC, Singh KD, Hamandi K, Muthukumaraswamy SD. The effects of AMPA receptor blockade on resting magnetoencephalography recordings. J Psychopharmacol 2017; 31:1527-1536. [PMID: 29084475 PMCID: PMC5987991 DOI: 10.1177/0269881117736915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ionotropic N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors of the glutamatergic neurotransmitter system are of fundamental importance to healthy brain function. Neuroimaging studies in humans have previously been conducted using various drugs that interact with N-methyl-D-aspartate glutamate receptors, but no such studies have investigated AMPA receptor signalling. The recent approval of perampanel (Fycompa) for use in humans provides a means to specifically study the role of AMPA receptors in the pharmacological basis of neuroimaging signals. Twenty male subjects participated in this placebo-controlled crossover study that consisted of two study days separated by a minimum two-week washout period. On one occasion participants ingested a 6 mg dose of perampanel, and on the other a placebo. Ten minutes of wakeful rest was recorded before and after each dose using magnetoencephalography. Subjective ratings of intoxication were significantly higher following drug than placebo. Cluster-based randomisation testing of sensor-level magnetoencephalography data showed significant drug-induced increases in low frequency power (1-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz), along with a significant decrease in the high gamma range (50-90 Hz). We also observed selective increases in functional connectivity in the alpha and beta bands. The findings are consistent with preclinical work and are similar to the spectral profile of other anti-epileptic drugs.
Collapse
Affiliation(s)
- Bethany C Routley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- The Epilepsy Unit, University Hospital of Wales, Cardiff, UK
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
- School of Psychology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Akeju O, Hobbs LE, Gao L, Burns SM, Pavone KJ, Plummer GS, Walsh EC, Houle TT, Kim SE, Bianchi MT, Ellenbogen JM, Brown EN. Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: A pilot study. Clin Neurophysiol 2017; 129:69-78. [PMID: 29154132 DOI: 10.1016/j.clinph.2017.10.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Sleep, which comprises of rapid eye movement (REM) and non-REM stages 1-3 (N1-N3), is a natural occurring state of decreased arousal that is crucial for normal cardiovascular, immune and cognitive function. The principal sedative drugs produce electroencephalogram beta oscillations, which have been associated with neurocognitive dysfunction. Pharmacological induction of altered arousal states that neurophysiologically approximate natural sleep, termed biomimetic sleep, may eliminate drug-induced neurocognitive dysfunction. METHODS We performed a prospective, single-site, three-arm, randomized-controlled, crossover polysomnography pilot study (n = 10) comparing natural, intravenous dexmedetomidine- (1-μg/kg over 10 min [n = 7] or 0.5-μg/kg over 10 min [n = 3]), and zolpidem-induced sleep in healthy volunteers. Sleep quality and psychomotor performance were assessed with polysomnography and the psychomotor vigilance test, respectively. Sleep quality questionnaires were also administered. RESULTS We found that dexmedetomidine promoted N3 sleep in a dose dependent manner, and did not impair performance on the psychomotor vigilance test. In contrast, zolpidem extended release was associated with decreased theta (∼5-8 Hz; N2 and N3) and increased beta oscillations (∼13-25 Hz; N2 and REM). Zolpidem extended release was also associated with increased lapses on the psychomotor vigilance test. No serious adverse events occurred. CONCLUSIONS Pharmacological induction of biomimetic N3 sleep with psychomotor sparing benefits is feasible. SIGNIFICANCE These results suggest that α2a adrenergic agonists may be developed as a new class of sleep enhancing medications with neurocognitive sparing benefits.
Collapse
Affiliation(s)
- Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lauren E Hobbs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara M Burns
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara J Pavone
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - George S Plummer
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa C Walsh
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tim T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Seong-Eun Kim
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electronics and Control Engineering, Hanbat National University, Daejon, Republic of Korea
| | - Matt T Bianchi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Port RG, Gajewski C, Krizman E, Dow HC, Hirano S, Brodkin ES, Carlson GC, Robinson MB, Roberts TPL, Siegel SJ. Protocadherin 10 alters γ oscillations, amino acid levels, and their coupling; baclofen partially restores these oscillatory deficits. Neurobiol Dis 2017; 108:324-338. [PMID: 28844789 DOI: 10.1016/j.nbd.2017.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Approximately one in 45 children have been diagnosed with Autism Spectrum Disorder (ASD), which is characterized by social/communication impairments. Recent studies have linked a subset of familial ASD to mutations in the Protocadherin 10 (Pcdh10) gene. Additionally, Pcdh10's expression pattern, as well as its known role within protein networks, implicates the gene in ASD. Subsequently, the neurobiology of mice heterozygous for Pcdh10 (Pcdh10+/-) has been investigated as a proxy for ASD. Male Pcdh10+/- mice have demonstrated sex-specific deficits in social behavior, recapitulating the gender bias observed in ASD. Furthermore, in vitro slice preparations of these Pcdh10+/- mice demonstrate selective decreases to high frequency electrophysiological responses, mimicking clinical observations. The direct in vivo ramifications of such decreased in vitro high frequency responses are unclear. As such, Pcdh10+/- mice and their wild-type (WT) littermates underwent in vivo electrocorticography (ECoG), as well as ex vivo amino acid concentration quantification using High Performance Liquid Chromatography (HPLC). Similar to the previously observed reductions to in vitro high frequency electrophysiological responses in Pcdh10+/- mice, male Pcdh10+/- mice exhibited reduced gamma-band (30-80Hz), but not lower frequency (10 and 20Hz), auditory steady state responses (ASSR). In addition, male Pcdh10+/- mice exhibited decreased signal-to-noise-ratio (SNR) for high gamma-band (60-100Hz) activity. These gamma-band perturbations for both ASSR and SNR were not observed in females. Administration of a GABAB agonist remediated these electrophysiological alterations among male Pcdh10+/-mice. Pcdh10+/- mice demonstrated increased concentrations of GABA and glutamine. Of note, a correlation of auditory gamma-band responses with underlying GABA concentrations was observed in WT mice. This correlation was not present in Pcdh10+/- mice. This study demonstrates the role of Pcdh10 in the regulation of excitatory-inhibitory balance as a function of GABA in ASD.
Collapse
Affiliation(s)
- Russell G Port
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA; Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher Gajewski
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth Krizman
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatric, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly C Dow
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Edward S Brodkin
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory C Carlson
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatric, University of Pennsylvania, Philadelphia, PA 19104, USA; Systems Pharmacology and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven J Siegel
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Abstract
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke.
Collapse
|
28
|
Maron E, Near J, Wallis G, Stokes M, Matthews PM, Nutt DJ. A pilot study of the effect of short-term escitalopram treatment on brain metabolites and gamma-oscillations in healthy subjects. J Psychopharmacol 2016; 30:579-80. [PMID: 27166387 DOI: 10.1177/0269881116636108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Eduard Maron
- Department of Psychiatry, University of Tartu, Tartu, Estonia Research and Development Service and Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - George Wallis
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Mark Stokes
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review examines recent brain imaging studies that might contribute to delivering better recovery of motor function after stroke. RECENT FINDINGS Most recent studies characterize differences in structural and functional organization of the poststroke brain in relation to impairment, or measure alterations in brain organization as the result of one form of therapy or another. These studies have not altered clinical practice. New approaches can test specific models of motor recovery after stroke. Firstly, anatomical assessment of key motor pathways, particularly corticospinal tract, may be useful in predicting long-term outcomes if used in combination with early clinical scores. Secondly, assessment of neuronal oscillations with electro or magneto-encephalography may provide a novel way of assessing the balance between excitatory and inhibitory cortical processes and thereby provide biomarkers of the potential for experience-dependent plasticity. SUMMARY Most recent studies are observational and do not test a plausible model of motor recovery after stroke. Brain imaging studies of stroke recovery need to consider how to provide tools to aid prediction of long-term outcome or response to treatment, or describe potential therapeutic targets for novel recovery promoting interventions, if they are to be clinically useful.
Collapse
|
30
|
Ahonen L, Huotilainen M, Brattico E. Within- and between-session replicability of cognitive brain processes: An MEG study with an N-back task. Physiol Behav 2016; 158:43-53. [PMID: 26855266 DOI: 10.1016/j.physbeh.2016.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/17/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
In the vast majority of electrophysiological studies on cognition, participants are only measured once during a single experimental session. The dearth of studies on test-retest reliability in magnetoencephalography (MEG) within and across experimental sessions is a preventing factor for longitudinal designs, imaging genetics studies, and clinical applications. From the recorded signals, it is not straightforward to draw robust and steady indices of brain activity that could directly be used in exploring behavioral effects or genetic associations. To study the variations in markers associated with cognitive functions, we extracted three event-related field (ERF) features from time-locked global field power (GFP) epochs using MEG while participants were performing a numerical N-back task in four consecutive measurements conducted during two different days separated by two weeks. We demonstrate that the latency of the M170, a neural correlate associated with cognitive functions such as working memory, was a stable parameter and did not show significant variations over time. In addition, the M170 peak amplitude and the mean amplitude of late positive component (LPP) also expressed moderate-to-strong reliability across multiple measures over time over many sensor spaces and between participants. The M170 amplitude varied more significantly between the measurements in some conditions but showed consistency over the participants over time. In addition we demonstrated significant correlation with the M170 and LPP parameters and cognitive load. The results are in line with the literature showing less within-subject fluctuation for the latency parameters and more consistency in between-subject comparisons for amplitude based features. The within-subject consistency was apparent also with longer delays between the measurements. We suggest that with a few limitations the ERF features show sufficient reliability and stability for longitudinal research designs and clinical applications for cognitive functions in single as well as cross-subject designs.
Collapse
Affiliation(s)
- L Ahonen
- Brain Work Research Centre, Finnish Institute of Occupational Health, Finland.
| | - M Huotilainen
- Brain Work Research Centre, Finnish Institute of Occupational Health, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - E Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Denmark; Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Finland
| |
Collapse
|
31
|
The European College of Neuropsychopharmacology (ECNP) Medicines Chest Initiative: Rationale and Promise. Pharmaceut Med 2015. [DOI: 10.1007/s40290-015-0111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|