1
|
Holmgård DSG, Zhou L, Kristensen JL, Jensen AA. The Heterogeneous Kinetic Origins of the Binding Properties of Orthosteric Ligands at Heteromeric Nicotinic Acetylcholine Receptors. J Med Chem 2025; 68:6683-6697. [PMID: 40043102 DOI: 10.1021/acs.jmedchem.5c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
A plethora of agonists and competitive antagonists have been developed to explore the therapeutic potential in neuronal nicotinic acetylcholine receptors (nAChRs). Based on equilibrium and kinetic [3H]epibatidine binding studies, we report that the kinetic fingerprints of [3H]epibatidine at five heteromeric αβ nAChRs and of seven classical agonists at α4β2 and α3β4 nAChRs differ substantially. While this diversity depends on both the agonist and receptor subtype, the overall pattern of kinetic determinants emerging from this profiling is complex. The dramatically different binding kinetics displayed by two alkaloids and competitive antagonists, (+)-DHβE and (+)-cocculine, at the α4β2 nAChR further exemplify how dissimilar kinetics can underlie very comparable pharmacological properties exhibited by close structural analogs. Thus, our findings elucidate the heterogeneous kinetic basis for orthosteric ligand binding to αβ nAChRs and emphasize how the binding affinities, selectivity profiles, and structure-activity relationships of these ligands are rooted in their kinetic traits at the receptors.
Collapse
Affiliation(s)
- David S G Holmgård
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Kusay AS, Luo Y, O'Mara ML, Balle T. A Pharmacophore for Drugs Targeting the α4α4 Binding Site of the (α4) 3(β2) 2 Nicotinic Acetylcholine Receptor. J Neurochem 2025; 169:e70000. [PMID: 39967313 PMCID: PMC11836552 DOI: 10.1111/jnc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) have an established role in pain pathways and devastating neurodegenerative diseases; however, few drugs have been successfully developed to target them. The most abundant nAChR in the brain, the α4β2 nAChR, is assembled from five subunits in a 3α:2β stoichiometry-(α4)3(β2)2. This receptor contains a unique agonist-binding site at the α4α4 interface in addition to two classical agonist-binding sites at α4β2 interfaces. Most known agonists target both α4α4 and α4β2 sites, however, a few compounds with selectivity for the α4α4 site have been identified. These α4α4 selective compounds have a modulator-like effect akin to benzodiazepines in the γ-aminobutyric acid type A receptor, which is desirable from a drug development perspective. The two most well characterised α4α4 selective compounds are CMPI and NS9283. Both are structurally very different from classical agonists, and it is puzzling how they occupy the same binding site. In the search for a common pharmacophore, we conducted extensive molecular dynamics simulations with both classical agonists and site-selective non-classical compounds. Analyses of the simulations revealed that the α4α4 binding site contains a unique pocket not found in the α4β2 binding site. CMPI and NS9283 were observed to bind in this pocket, thereby explaining why they are selective for the α4α4 binding site. The proposed binding mode featured a closed-loop C conformation, which is strongly correlated with agonism in nAChRs and explained key site-directed mutagenesis data for both compounds. Based on this binding mode, we proposed a pharmacophore for drugs targeting the α4α4 binding site. The proposed pharmacophore captures the essence of the original model, that is, nicotinic agonists act as a bridge between protein subunits. The pharmacophore model we propose is unique to the α4α4 binding site and provides a template for developing new site-selective therapeutic agents.
Collapse
Affiliation(s)
- Ali S. Kusay
- Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Department of Painology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Megan L. O'Mara
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQueenslandAustralia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Jakubík J, Randáková A. Insights into the operational model of agonism of receptor dimers. Expert Opin Drug Discov 2022; 17:1181-1191. [PMID: 36369915 DOI: 10.1080/17460441.2023.2147502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Accurate ranking of efficacies and potencies of agonists is essential in the discovery of new selective agonists. For the purpose of system-independent ranking of agonists, the operational model of agonism (OMA) has become a standard. Many receptors function as oligomers which makes functional responses more complex, requiring an extension of the original OMA. AREAS COVERED Explicit equations of the operational model of agonism of receptor dimers (OMARD) were derived. The OMARD can be applied to any receptor possessing two orthosteric sites. The behavior of OMARD was analyzed to demonstrate its complexity and relation to experimental data. Properties of OMARD and OMA equations were compared to demonstrate their pros and cons. EXPERT OPINION Extension of OMA by slope factors gives simple equations of functional response that are easy to fit experimental data but results may be inaccurate because of exponentiation of operational efficacy. Also, such equations cannot accommodate bell-shaped curves. Explicit equations of OMARD give accurate results but are complex and tedious to fit experimental data. All operational models use inter-dependent parameters that are a hurdle in the fitting. A good understanding of OMARD behavior helps to overcome such obstacles.
Collapse
Affiliation(s)
- Jan Jakubík
- Laboratory of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
| | - Alena Randáková
- Laboratory of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
| |
Collapse
|
4
|
Bavo F, Pallavicini M, Gotti C, Appiani R, Moretti M, Colombo SF, Pucci S, Viani P, Budriesi R, Renzi M, Fucile S, Bolchi C. Modifications at C(5) of 2-(2-Pyrrolidinyl)-Substituted 1,4-Benzodioxane Elicit Potent α4β2 Nicotinic Acetylcholine Receptor Partial Agonism with High Selectivity over the α3β4 Subtype. J Med Chem 2020; 63:15668-15692. [PMID: 33325696 DOI: 10.1021/acs.jmedchem.0c01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of diastereomeric 2-(2-pyrrolidinyl)-1,4-benzodioxanes bearing a small, hydrogen-bonding substituent at the 7-, 6-, or 5-position of benzodioxane have been studied for α4β2 and α3β4 nicotinic acetylcholine receptor affinity and activity. Analogous to C(5)H replacement with N and to a much greater extent than decoration at C(7), substitution at benzodioxane C(5) confers very high α4β2/α3β4 selectivity to the α4β2 partial agonism. Docking into the two receptor structures recently determined by cryo-electron microscopy and site-directed mutagenesis at the minus β2 side converge in indicating that the limited accommodation capacity of the β2 pocket, compared to that of the β4 pocket, makes substitution at C(5) rather than at more projecting C(7) position determinant for this pursued subtype selectivity.
Collapse
Affiliation(s)
- Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Cecilia Gotti
- Institute of Neuroscience, CNR, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Milena Moretti
- Institute of Neuroscience, CNR, Via Vanvitelli 32, I-20129 Milano, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | | | - Susanna Pucci
- Institute of Neuroscience, CNR, Via Vanvitelli 32, I-20129 Milano, Italy.,Hunimed University, Via Rita Levi-Montalcini 4, Pieve Emanuele, I-20090 Milan, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Università degli Studi di Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Massimiliano Renzi
- Dipartimento di Fisiologia e Farmacologia, Sapienza Università di Roma, Piazzale Moro 5, 00185 Roma, Italy
| | - Sergio Fucile
- Dipartimento di Fisiologia e Farmacologia, Sapienza Università di Roma, Piazzale Moro 5, 00185 Roma, Italy.,I.R.C.C.S. Neuromed, Via Atinese 18, 86077 Pozzilli, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| |
Collapse
|
5
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
6
|
L’Annunziata MF. Flow-cell radionuclide analysis. HANDBOOK OF RADIOACTIVITY ANALYSIS: VOLUME 2 2020:729-820. [DOI: 10.1016/b978-0-12-814395-7.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Weltzin MM, George AA, Lukas RJ, Whiteaker P. Distinctive single-channel properties of α4β2-nicotinic acetylcholine receptor isoforms. PLoS One 2019; 14:e0213143. [PMID: 30845161 PMCID: PMC6405073 DOI: 10.1371/journal.pone.0213143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
Central nervous system nicotinic acetylcholine receptors (nAChR) are predominantly of the α4β2 subtype. Two isoforms exist, with high or low agonist sensitivity (HS-(α4β2)2β2- and LS-(α4β2)2α4-nAChR). Both isoforms exhibit similar macroscopic potency and efficacy values at low acetylcholine (ACh) concentrations, mediated by a common pair of high-affinity α4(+)/(-)β2 subunit binding interfaces. However LS-(α4β2)2α4-nAChR also respond to higher concentrations of ACh, acting at a third α4(+)/(-)α4 subunit interface. To probe isoform functional differences further, HS- and LS-α4β2-nAChR were expressed in Xenopus laevis oocytes and single-channel responses were assessed using cell-attached patch-clamp. In the presence of a low ACh concentration, both isoforms produce low-bursting function. HS-(α4β2)2β2-nAChR exhibit a single conductance state, whereas LS-(α4β2)2α4-nAChR display two distinctive conductance states. A higher ACh concentration did not preferentially recruit either conductance state, but did result in increased LS-(α4β2)2α4-nAChR bursting and reduced closed times. Introduction of an α4(+)/(-)α4-interface loss-of-function α4W182A mutation abolished these changes, confirming this site's role in mediating LS-(α4β2)2α4-nAChR responses. Small or large amplitude openings are highly-correlated within individual LS-(α4β2)2α4-nAChR bursts, suggesting that they arise from distinct intermediate states, each of which is stabilized by α4(+)/(-)α4 site ACh binding. These findings are consistent with α4(+)/(-)α4 subunit interface occupation resulting in allosteric potentiation of agonist actions at α4(+)/(-)β2 subunit interfaces, rather than independent induction of high conductance channel openings.
Collapse
Affiliation(s)
- Maegan M. Weltzin
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
- * E-mail:
| | - Andrew A. George
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
8
|
Zhang X, Hartung JE, Friedman RL, Koerber HR, Belfer I, Gold MS. Nicotine Evoked Currents in Human Primary Sensory Neurons. THE JOURNAL OF PAIN 2019; 20:810-818. [PMID: 30659887 DOI: 10.1016/j.jpain.2019.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 11/28/2022]
Abstract
Sensory neuron nicotinic acetylcholine receptors (nAChRs) contribute to pain associated with tissue injury. However, there are marked differences between rats and mice with respect to both the properties and distribution of nAChR currents in sensory neurons. Because both species are used to understand pain signaling in humans, we sought to determine whether the currents present in either species was reflective of those present in human sensory neurons. Neurons from the L4/L5 dorsal root ganglia were obtained from adult male and female organ donors. Nicotine evoked currents were detected in 40 of 47 neurons (85%). In contrast with the naïve mouse, in which almost all nAChR currents are transient, or the rat, in which both mouse-like transient and more slowly activating and inactivating currents are detected, all the currents in human DRG neurons were slow, but slower than those in the rat. Currents were blocked by the nAChR antagonists mecamylamine (30 µmol/L), but not by the TRPA1 selective antagonist HC-030031 (10 µmol/L). Single cell polymerase chain reaction analysis of nicotinic receptor subunit expression in human DRG neurons are consistent with functional data indicating that receptor expression is detected 85 ± 2.1% of neurons assessed (n = 48, from 4 donors). The most prevalent coexpression pattern was α3/β2 (95 ± 4% of neurons with subunits), but α7 subunits were detected in 70 ± 3.4% of neurons. These results suggest that there are not only species differences in the sensory neuron distribution of nAChR currents between rodent and human, but that the subunit composition of the channel underlying human nAChR currents may be different from those in the mouse or rat. PERSPECTIVE: The properties and distribution of nicotine evoked currents in human sensory neurons were markedly different from those previously observed in mice and rats. These observations add additional support to the suggestion that human sensory neurons may be an essential screening tool for those considering moving novel therapeutics targeting primary afferents into clinical trials.
Collapse
Affiliation(s)
| | - Jane E Hartung
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert L Friedman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - H Richard Koerber
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Michael S Gold
- Department of Anesthesiology; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Walsh RM, Roh SH, Gharpure A, Morales-Perez CL, Teng J, Hibbs RE. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 2018; 557:261-265. [PMID: 29720657 PMCID: PMC6132059 DOI: 10.1038/s41586-018-0081-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
Abstract
Fast chemical communication in the nervous system is mediated by neurotransmitter-gated ion channels. The prototypical member of this class of cell surface receptors is the cation-selective nicotinic acetylcholine receptor. As with most ligand-gated ion channels, nicotinic receptors assemble as oligomers of subunits, usually as hetero-oligomers and often with variable stoichiometries 1 . This intrinsic heterogeneity in protein composition provides fine tunability in channel properties, which is essential to brain function, but frustrates structural and biophysical characterization. The α4β2 subtype of the nicotinic acetylcholine receptor is the most abundant isoform in the human brain and is the principal target in nicotine addiction. This pentameric ligand-gated ion channel assembles in two stoichiometries of α- and β-subunits (2α:3β and 3α:2β). Both assemblies are functional and have distinct biophysical properties, and an imbalance in the ratio of assemblies is linked to both nicotine addiction2,3 and congenital epilepsy4,5. Here we leverage cryo-electron microscopy to obtain structures of both receptor assemblies from a single sample. Antibody fragments specific to β2 were used to 'break' symmetry during particle alignment and to obtain high-resolution reconstructions of receptors of both stoichiometries in complex with nicotine. The results reveal principles of subunit assembly and the structural basis of the distinctive biophysical and pharmacological properties of the two different stoichiometries of this receptor.
Collapse
Affiliation(s)
- Richard M Walsh
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Soung-Hun Roh
- Department of Bioengineering and BioX Program, Stanford University, Stanford, CA, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claudio L Morales-Perez
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Giastas P, Zouridakis M, Tzartos SJ. Understanding structure-function relationships of the human neuronal acetylcholine receptor: insights from the first crystal structures of neuronal subunits. Br J Pharmacol 2017; 175:1880-1891. [PMID: 28452148 DOI: 10.1111/bph.13838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 01/27/2023] Open
Abstract
Nicotinic ACh receptors (nAChRs) are the best studied members of the superfamily of pentameric ligand-gated ion channels (pLGICs). Neuronal nAChRs regulate neuronal excitability and neurotransmitter release in the nervous system and form either homo- or hetero-pentameric complexes with various combinations of the 11 neuronal nAChR subunits (α2-7, α9, α10 and β2-4) known to exist in humans. In addition to their wide distribution in the nervous system, neuronal nAChRs have been also found in immune cells and many peripheral tissues. These nAChRs are important drug targets for neurological and neuropsychiatric diseases (e.g. Alzheimer's, schizophrenia) and substance addiction (e.g. nicotine), as well as in a variety of diseases such as chronic pain, auditory disorders and some cancers. To decipher the functional mechanisms of human nAChRs and develop efficient and specific therapeutic drugs, elucidation of their high-resolution structures is needed. Recent studies, including the X-ray crystal structures of the near-intact α4β2 nAChR and of the ligand-binding domains of the α9 and α2 subunits, have advanced our knowledge on the detailed structure of the ligand-binding sites formed between the same and different subunits and revealed many other functionally important interactions. The aim of this review is to highlight some of the structural and functional findings of these studies and to compare them with recent breakthrough findings on other pLGIC members and earlier data from their homologous ACh-binding proteins. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
11
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
George AA, Bloy A, Miwa JM, Lindstrom JM, Lukas RJ, Whiteaker P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1. FASEB J 2017; 31:1398-1420. [PMID: 28100642 DOI: 10.1096/fj.201600733r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 11/11/2022]
Abstract
This study investigates-for the first time to our knowledge-the existence and mechanisms of functional interactions between the endogenous mammalian prototoxin, lynx1, and α3- and β4-subunit-containing human nicotinic acetylcholine receptors (α3β4*-nAChRs). Concatenated gene constructs were used to express precisely defined α3β4*-nAChR isoforms (α3β4)2β4-, (α3β4)2α3-, (α3β4)2α5(398D)-, and (α3β4)2α5(398N)-nAChR in Xenopus oocytes. In the presence or absence of lynx1, α3β4*-nAChR agonist responses were recorded by using 2-electrode voltage clamp and single-channel electrophysiology, whereas radioimmunolabeling measured cell-surface expression. Lynx1 reduced (α3β4)2β4-nAChR function principally by lowering cell-surface expression, whereas single-channel effects were primarily responsible for reducing (α3β4)2α3-nAChR function [decreased unitary conductance (≥50%), altered burst proportions (3-fold reduction in the proportion of long bursts), and enhanced closed dwell times (3- to 6-fold increase)]. Alterations in both cell-surface expression and single-channel properties accounted for the reduction in (α3β4)2α5-nAChR function that was mediated by lynx1. No effects were observed when α3β4*-nAChRs were coexpressed with mutated lynx1 (control). Lynx1 is expressed in the habenulopeduncular tract, where α3β4*-α5*-nAChR subtypes are critical contributors to the balance between nicotine aversion and reward. This gives our findings a high likelihood of physiologic significance. The exquisite isoform selectivity of lynx1 interactions provides new insights into the mechanisms and allosteric sites [α(-)-interface containing] by which prototoxins can modulate nAChR function.-George, A. A., Bloy, A., Miwa, J. M., Lindstrom, J. M., Lukas, R. J., Whiteaker, P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1.
Collapse
Affiliation(s)
- Andrew A George
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA;
| | - Abigail Bloy
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.,Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Jon M Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
13
|
Jain A, Kuryatov A, Wang J, Kamenecka TM, Lindstrom J. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors. J Biol Chem 2016; 291:23452-23463. [PMID: 27645992 DOI: 10.1074/jbc.m116.749150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/06/2022] Open
Abstract
All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2)2α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2)2α5 and (α4β2)2β3 nAChRs. The α4/α5 interface in (β2α4)2α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders.
Collapse
Affiliation(s)
- Akansha Jain
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jingyi Wang
- the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and
| | - Theodore M Kamenecka
- the Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
14
|
Fasoli F, Moretti M, Zoli M, Pistillo F, Crespi A, Clementi F, Mc Clure-Begley T, Marks M, Gotti C. In vivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of α4β2 nicotinic receptors in cortex and thalamus. Neuropharmacology 2016; 108:324-31. [DOI: 10.1016/j.neuropharm.2016.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/16/2016] [Accepted: 04/27/2016] [Indexed: 01/18/2023]
|
15
|
Indurthi DC, Lewis TM, Ahring PK, Balle T, Chebib M, Absalom NL. Ligand Binding at the 4-4 Agonist-Binding Site of the 42 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State. PLoS One 2016; 11:e0161154. [PMID: 27552221 PMCID: PMC4995024 DOI: 10.1371/journal.pone.0161154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors.
Collapse
Affiliation(s)
| | - Trevor M. Lewis
- School of Medical Sciences, University of NSW, Kensington, NSW, 2052, Australia
| | | | - Thomas Balle
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
- * E-mail: (NLA); (MC)
| | - Nathan L. Absalom
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
- * E-mail: (NLA); (MC)
| |
Collapse
|
16
|
Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Proc Natl Acad Sci U S A 2016; 113:9635-40. [PMID: 27493220 DOI: 10.1073/pnas.1602619113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we report the X-ray crystal structure of the extracellular domain (ECD) of the human neuronal α2 nicotinic acetylcholine receptor (nAChR) subunit in complex with the agonist epibatidine at 3.2 Å. Interestingly, α2 was crystallized as a pentamer, revealing the intersubunit interactions in a wild type neuronal nAChR ECD and the full ligand binding pocket conferred by two adjacent α subunits. The pentameric assembly presents the conserved structural scaffold observed in homologous proteins, as well as distinctive features, providing unique structural information of the binding site between principal and complementary faces. Structure-guided mutagenesis and electrophysiological data confirmed the presence of the α2(+)/α2(-) binding site on the heteromeric low sensitivity α2β2 nAChR and validated the functional importance of specific residues in α2 and β2 nAChR subunits. Given the pathological importance of the α2 nAChR subunit and the high sequence identity with α4 (78%) and other neuronal nAChR subunits, our findings offer valuable information for modeling several nAChRs and ultimately for structure-based design of subtype specific drugs against the nAChR associated diseases.
Collapse
|
17
|
Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors: evidence of a novel benzodiazepine site in the α1-α1 interface. Sci Rep 2016; 6:28674. [PMID: 27346730 PMCID: PMC4921915 DOI: 10.1038/srep28674] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Zolpidem is not a typical GABAA receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1β3 GABAA receptors in either the 3α1:2β3 or 2α1:3β3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a β3-β3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn2+. At the 3α1:2β3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3β3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1β3 (3α1:2β3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target.
Collapse
|
18
|
Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel. Proc Natl Acad Sci U S A 2016; 113:E644-53. [PMID: 26792524 DOI: 10.1073/pnas.1423753113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The invertebrate glutamate-gated chloride-selective receptors (GluClRs) are ion channels serving as targets for ivermectin (IVM), a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. The native GluClR is a heteropentamer consisting of α and β subunit types, with yet unknown subunit stoichiometry and arrangement. Based on the recent crystal structure of a homomeric GluClαR, we introduced mutations at the intersubunit interfaces where Glu (the neurotransmitter) binds. By electrophysiological characterization of these mutants, we found heteromeric assemblies with two equivalent Glu-binding sites at β/α intersubunit interfaces, where the GluClβ and GluClα subunits, respectively, contribute the "principal" and "complementary" components of the putative Glu-binding pockets. We identified a mutation in the IVM-binding site (far away from the Glu-binding sites), which significantly increased the sensitivity of the heteromeric mutant receptor to both Glu and IVM, and improved the receptor subunits' cooperativity. We further characterized this heteromeric GluClR mutant as a receptor having a third Glu-binding site at an α/α intersubunit interface. Altogether, our data unveil heteromeric GluClR assemblies having three α and two β subunits arranged in a counterclockwise β-α-β-α-α fashion, as viewed from the extracellular side, with either two or three Glu-binding site interfaces.
Collapse
|
19
|
Lucero LM, Weltzin MM, Eaton JB, Cooper JF, Lindstrom JM, Lukas RJ, Whiteaker P. Differential α4(+)/(-)β2 Agonist-binding Site Contributions to α4β2 Nicotinic Acetylcholine Receptor Function within and between Isoforms. J Biol Chem 2015; 291:2444-59. [PMID: 26644472 DOI: 10.1074/jbc.m115.684373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(-)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(-)α4 site with lower agonist affinity than the α4(+)/(-)β2 sites. However, the relative roles of the conserved α4(+)/(-)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (-)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with (125)I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(-)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(-)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect.
Collapse
Affiliation(s)
- Linda M Lucero
- From the Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013 and
| | - Maegan M Weltzin
- From the Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013 and
| | - J Brek Eaton
- From the Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013 and
| | - John F Cooper
- the Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104
| | - Jon M Lindstrom
- the Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104
| | - Ronald J Lukas
- From the Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013 and
| | - Paul Whiteaker
- From the Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013 and
| |
Collapse
|
20
|
Shahsavar A, Ahring PK, Olsen JA, Krintel C, Kastrup JS, Balle T, Gajhede M. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity. Mol Pharmacol 2015; 88:697-707. [PMID: 26180047 DOI: 10.1124/mol.115.098061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/15/2015] [Indexed: 02/14/2025] Open
Abstract
Neuronal α4β2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(β2)(2) receptor subpopulation was discovered. In particular, three residues, H142, Q150, and T152, were demonstrated to be involved in the distinct pharmacology of the α4-α4 versus α4-β2 binding sites. To obtain insight into the three-dimensional structure of the α4-α4 binding site, a surrogate protein reproducing α4-α4 binding characteristics was constructed by introduction of three point mutations, R104H, L112Q, and M114T, into the binding pocket of Lymnaea stagnalis acetylcholine-binding protein (Ls-AChBP). Cocrystallization with two agonists possessing distinct pharmacologic profiles, NS3920 [1-(6-bromopyridin-3-yl)-1,4-diazepane] and NS3573 [1-(5-ethoxypyridin-3-yl)-1,4-diazepane], highlights the roles of the three residues in determining binding affinities and functional properties of ligands at the α4-α4 interface. Confirmed by mutational studies, our structures suggest a unique ligand-specific role of residue H142 on the α4 subunit. In the cocrystal structure of the mutated Ls-AChBP with the high-efficacy ligand NS3920, the corresponding histidine forms an intersubunit bridge that reinforces the ligand-mediated interactions between subunits. The structures further reveal that the binding site residues gain different and ligand-dependent interactions that could not be predicted based on wild-type Ls-AChBP structures in complex with the same agonists. The results show that an unprecedented correlation between binding in engineered AChBPs and functional receptors can be obtained and provide new opportunities for structure-based design of drugs targeting specific nicotinic acetylcholine receptor interfaces.
Collapse
Affiliation(s)
- Azadeh Shahsavar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| | - Philip K Ahring
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| | - Jeppe A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| | - Christian Krintel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| | - Thomas Balle
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.S., J.A.O., C.K., J.S.K., M.G.); Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia (P.K.A., J.A.O., T.B.); Saniona AB, Ballerup, Denmark (P.K.A.); and NeuroSearch A/S, Hellerup, Denmark (J.A.O.)
| |
Collapse
|
21
|
Balle T, Olsen JA, Shahsavar A, Kastrup JS, Peter D, Gajhede M, Ahring PK. Modulation of α4β2 NACHRs via an extracellular binding site: Structural studies and novel engineered receptors to aid drug discovery. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Exploiting ligand selectivity to understand allosteric receptor opening. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|