1
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31-86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Rockville, MD, USA
| | - Marisa Roberto
- Molecular Medicine Department, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Peoples RW, Ren H. Effects of ethanol on GluN1/GluN2A and GluN1/GluN2B NMDA receptor-ion channel gating kinetics. Alcohol Clin Exp Res 2022; 46:2203-2213. [PMID: 36305341 PMCID: PMC9771960 DOI: 10.1111/acer.14965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The N-methyl-D-aspartate receptor (NMDAR) is a major molecular target of alcohol action in the central nervous system, yet many aspects of alcohol's modulation of the activity of this ion channel remain unclear. We and others have shown that ethanol inhibition of NMDAR involves alterations in gating, especially a reduction in mean open time. However, a full description of ethanol's effects on NMDAR kinetics, including fitting them to a kinetic model, has not been reported. METHODS To determine ethanol's effects on NMDAR kinetics, we used steady-state single-channel recording in outside-out patches from HEK-293 cells transfected with recombinant GluN1/GluN2A or GluN1/GluN2B NMDAR subunits. Very low glutamate concentrations were used to isolate individual activations of the receptor. RESULTS In both subunit types, ethanol, at approximate whole-cell IC50 values (156 mM, GluN2A; 150 mM, GluN2B), reduced open probability (po ) by approximately 50% and decreased mean open time without changing the frequency of opening. Open and shut time distributions exhibited two and five components, respectively; ethanol selectively decreased the time constant and relative proportion of the longer open time component. In the GluN2A subunit, ethanol increased the time constants of all but the longest shut time components, whereas in the GluN2B subunit, shut times were unchanged by ethanol. Fitting of bursts of openings (representing individual activations of the receptor) to the gating portion of a kinetic model revealed that ethanol altered two rates: the rate associated with activation of the GluN2A or GluN2B subunit, and the rate associated with the closing of the longer of the two open states. CONCLUSIONS These results demonstrate that ethanol selectively alters individual kinetic rates and thus appears to selectively affect distinct conformational transitions involved in NMDAR gating.
Collapse
Affiliation(s)
- Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
The escalation in ethanol consumption following chronic intermittent ethanol exposure is blunted in mice expressing ethanol-resistant GluN1 or GluN2A NMDA receptor subunits. Psychopharmacology (Berl) 2021; 238:271-279. [PMID: 33052417 PMCID: PMC7796987 DOI: 10.1007/s00213-020-05680-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels essential for glutamatergic transmission and plasticity. NMDARs are inhibited by acute ethanol and undergo brain region-specific adaptations after chronic alcohol exposure. In previous studies, we reported that knock-in mice expressing ethanol-insensitive GluN1 or GluN2A NMDAR subunits display altered behavioral responses to acute ethanol and genotype-dependent changes in drinking using protocols that do not produce dependence. A key unanswered question is whether the intrinsic ethanol sensitivity of NMDARs also plays a role in determining behavioral adaptations that accompany the development of dependence. To test this, we exposed mice to repeated cycles of chronic intermittent ethanol (CIE) vapor known to produce a robust escalation in ethanol consumption and preference. As expected, wild-type mice showed a significant increase from baseline in ethanol consumption and preference after each of the four weekly CIE cycles. In contrast, ethanol consumption in male GluN2A(A825W) mice was unchanged following cycles 1, 2, and 4 of CIE with a modest increase appearing after cycle 3. Wild-type and GluN2A(A825W) female mice did not show a clear or consistent escalation in ethanol consumption or preference following CIE treatment. In male GluN1(F639A) mice, the increase in ethanol consumption observed with their wild-type littermates was delayed until later cycles of exposure. These results suggest that the acute ethanol sensitivity of NMDARs especially those containing the GluN2A subunit may be a critical factor in the escalation of ethanol intake in alcohol dependence.
Collapse
|
4
|
Abstract
Ethanol is a chemoattractant for Bacillus subtilis even though it is not metabolized and inhibits growth. B. subtilis likely uses ethanol to find ethanol-fermenting microorganisms to utilize as prey. Two chemoreceptors sense ethanol: HemAT and McpB. HemAT’s myoglobin-like sensing domain directly binds ethanol, but the heme group is not involved. McpB is a transmembrane receptor consisting of an extracellular sensing domain and a cytoplasmic signaling domain. While most attractants bind the extracellular sensing domain, we found that ethanol directly binds between intermonomer helices of the cytoplasmic signaling domain of McpB, using a mechanism akin to those identified in many mammalian ethanol-binding proteins. Our results indicate that the sensory repertoire of chemoreceptors extends beyond the sensing domain and can directly involve the signaling domain. Motile bacteria sense chemical gradients using chemoreceptors, which consist of distinct sensing and signaling domains. The general model is that the sensing domain binds the chemical and the signaling domain induces the tactic response. Here, we investigated the unconventional sensing mechanism for ethanol taxis in Bacillus subtilis. Ethanol and other short-chain alcohols are attractants for B. subtilis. Two chemoreceptors, McpB and HemAT, sense these alcohols. In the case of McpB, the signaling domain directly binds ethanol. We were further able to identify a single amino acid residue, Ala431, on the cytoplasmic signaling domain of McpB that, when mutated to serine, reduces taxis to alcohols. Molecular dynamics simulations suggest that the conversion of Ala431 to serine increases coiled-coil packing within the signaling domain, thereby reducing the ability of ethanol to bind between the helices of the signaling domain. In the case of HemAT, the myoglobin-like sensing domain binds ethanol, likely between the helices encapsulating the heme group. Aside from being sensed by an unconventional mechanism, ethanol also differs from many other chemoattractants because it is not metabolized by B. subtilis and is toxic. We propose that B. subtilis uses ethanol and other short-chain alcohols to locate prey, namely, alcohol-producing microorganisms.
Collapse
|
5
|
Boikov SI, Sibarov DA, Antonov SM. Ethanol inhibition of NMDA receptors in calcium-dependent and -independent modes. Biochem Biophys Res Commun 2020; 522:1046-1051. [PMID: 31818458 DOI: 10.1016/j.bbrc.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
N-methyl-d-aspartate receptor (NMDAR) is an essential target for ethanol action in the central nervous system (CNS). Whereas an alcohol addiction treatment represents a severe medical problem, many aspects of ethanol action at physiologically relevant concentrations on NMDARs are still unclear. Here using the whole-cell patch-clamp recording on cortical neurons in the primary culture, we studied inhibition of NMDAR currents by different ethanol concentrations ([Et]s) and its dependence on extracellular Ca2+. The ethanol action on NMDA-activated currents exhibited a biphasic concentration-inhibition relationship in the presence of extracellular Ca2+. The high-affinity region of the curve was found within the range of [Et]s from 9 mM to 30 mM and was characterized by IC50,H of about 20 mM. The low-affinity region was observed within the range of [Et]s from 85 mM to 200 mM with IC50,L of about 150 mM. In the absence of extracellular Ca2+, the ethanol concentration-inhibition relationship became monophasic, with IC50,L of about 200 mM, since the high-affinity component disappeared. A substitution of Li+ for Na+ in the bathing solution and an extraction of cholesterol from the plasma membrane with methyl-β-cyclodextrin, which are the treatments that both promote the Ca2+-dependent desensitization (CDD) of NMDARs, abolished the high-affinity Ca2+-dependent component of the NMDAR ethanol inhibition. Besides, this component was not observed when neurons were loaded with BAPTA. These data suggest that most likely, ethanol at low concentrations enhances the NMDAR CDD. In agreement when the dependence of the NMDAR CDD on extracellular Ca2+ was directly measured 22 mM ethanol enhanced the NMDAR CDD since an extracellular Ca2+ concentration that caused 50% of the NMDAR CDD decreased almost 3-folds from 0.81 mM to 0.28 mM, and an extent of the CDD was also more pronounced. The low-affinity component of the NMDAR ethanol inhibition was resistant to the above treatments suggesting CDD-independent direct action on NMDARs. Thus, at a physiologically relevant concentration of extracellular Ca2+ and ethanol that could be reached in the blood during light-mild human alcohol intoxication, ethanol causes an enhancement of the NMDAR CDD, which could be in general accompanied by some disruptions of the CNS excitatory system.
Collapse
Affiliation(s)
- Sergei I Boikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez pr. 44, Saint-Petersburg, Russia
| | - Dmitry A Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez pr. 44, Saint-Petersburg, Russia.
| | - Sergei M Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez pr. 44, Saint-Petersburg, Russia
| |
Collapse
|
6
|
Kubota H, Akaike H, Okamitsu N, Jang IS, Nonaka K, Kotani N, Akaike N. Xenon modulates the GABA and glutamate responses at genuine synaptic levels in rat spinal neurons. Brain Res Bull 2020; 157:51-60. [PMID: 31987927 DOI: 10.1016/j.brainresbull.2020.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/11/2023]
Abstract
Effects of xenon (Xe) on whole-cell currents induced by glutamate (Glu), its three ionotropic subtypes, and GABA, as well as on the fast synaptic glutamatergic and GABAergic transmissions, were studied in the mechanically dissociated "synapse bouton preparation" of rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique evaluates pure single or multi-synapse responses from native functional nerve endings and enables us to quantify how Xe influences pre- and postsynaptic transmissions accurately. Effects of Xe on glutamate (Glu)-, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, kainate (KA)- and N-methyl-d-aspartate (NMDA)- and GABAA receptor-mediated whole-cell currents were investigated by the conventional whole-cell patch configuration. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were measured as spontaneous (s) and evoked (e) EPSCs and IPSCs. Evoked synaptic currents were elicited by paired-pulse focal electric stimulation. Xe decreased Glu, AMPA, KA, and NMDA receptor-mediated whole-cell currents but did not change GABAA receptor-mediated whole-cell currents. Xe decreased the frequency and amplitude but did not affect the 1/e decay time of the glutamatergic sEPSCs. Xe decreased the frequency without affecting the amplitude and 1/e decay time of GABAergic sIPSCs. Xe decreased the amplitude and increased the failure rate (Rf) and paired-pulse ratio (PPR) without altering the 1/e decay time of both eEPSC and eIPSC, suggesting that Xe acts on the presynaptic side of the synapse. The presynaptic inhibition was greater in eEPSCs than in eIPSCs. We conclude that Xe decreases glutamatergic and GABAergic spontaneous and evoked transmissions at the presynaptic level. The glutamatergic presynaptic responses are the main target of anesthesia-induced neuronal responses. In contrast, GABAergic responses minimally contribute to Xe anesthesia.
Collapse
Affiliation(s)
- Hisahiko Kubota
- Department of Pharmacology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Nobuharu Okamitsu
- Department of Electrics and Computer Engineering, Faculty of Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, 731-5193, Japan
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Kiku Nonaka
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan.
| |
Collapse
|
7
|
Eby JM, Majetschak M. Effects of ethanol and ethanol metabolites on intrinsic function of mesenteric resistance arteries. PLoS One 2019; 14:e0214336. [PMID: 30893362 PMCID: PMC6426218 DOI: 10.1371/journal.pone.0214336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests that ethanol-induced hypertension is associated with increased cardiovascular responsiveness to vasopressors in vivo and enhanced reactivity of isolated arteries to vasopressors ex vivo. The underlying mechanisms are not well understood and the contribution of ethanol metabolites to vascular effects induced by ethanol consumption are unclear. Mesenteric resistance arteries were harvested from Sprague-Dawley rats. Pressure myography was utilized to test effects of ethanol, acetaldehyde and phosphatidylethanol on myogenic tone and on vasoconstriction induced by phenylephrine, arginine vasopressin (aVP), endothelin-1 and KCl. Ethanol, acetaldehyde and phosphatidylethanol concentrations were monitored during the experiments. Ethanol concentrations in the vessel bath decreased with a half-life of 25min; acetaldehyde and phosphatidylethanol concentrations remained constant. Pretreatment with ethanol dose-dependently increased the potency of phenylephrine to induce vasoconstriction 4-fold (p<0.01). These effects were comparable when arteries were pre-treated with a single dose of ethanol for 30min and when ethanol concentrations were kept constant during 30min and 60min of pretreatment. While ethanol also dose-dependently increased the potency of aVP to induce vasoconstriction 1.7-fold (p<0.05), it did not affect vasoconstriction induced by endothelin-1 or KCl. Acetaldehyde pre-treatment (30 min) dose-dependently increased the potency of phenylephrine to induce vasoconstriction 2.7-fold (p<0.01) but did not affect other vasoconstrictor responses. Phosphatidylethanol did not affect any vasoconstrictor responses. Ethanol and its metabolites did not affect myogenic tone. These data suggest that ethanol and acetaldehyde selectively sensitize intrinsic constrictor responses upon activation of vascular α1-adrenergic and/or vasopressin receptors at clinically relevant concentrations. Our findings support the concept that enhanced vasoreactivity to vasoactive hormones contributes to the development of hypertension induced by ethanol consumption. Ex vivo exposure of resistance arteries to ethanol and acetaldehyde resembles effects of chronic ethanol consumption on intrinsic vascular function, and thus could serve as test platform to evaluate interventions aimed to mitigate vascular effects associated with ethanol consumption.
Collapse
Affiliation(s)
- Jonathan M. Eby
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
- Alcohol Research Program (ARP), Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Noori HR, Mücksch C, Urbassek HM. Ethanol-induced conformational fluctuations of NMDA receptors. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1504135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hamid R. Noori
- Neuronal Convergence Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christian Mücksch
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | - Herbert M. Urbassek
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
9
|
Naassila M, Pierrefiche O. GluN2B Subunit of the NMDA Receptor: The Keystone of the Effects of Alcohol During Neurodevelopment. Neurochem Res 2018; 44:78-88. [DOI: 10.1007/s11064-017-2462-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022]
|
10
|
Khrustalev VV, Khrustaleva TA, Lelevich SV. Ethanol binding sites on proteins. J Mol Graph Model 2017; 78:187-194. [PMID: 29078103 DOI: 10.1016/j.jmgm.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 01/19/2023]
Abstract
This study is on the analysis of ethanol binding sites on 3D structures of nonredundant proteins from the Protein Data Bank. The only one amino acid residue that is significantly overrepresented around ethanol molecules is Tyr. There are usually two or more Tyr residues in the same ethanol binding site, while residues of Thr, Asp and Gln are underrepresented around them. Residues of Ala and Pro are significantly underrepresented in ethanol binding surfaces. Several residues (Phe, Val, Pro, Ala, Arg, His, Ser, Asp) bind ethanol significantly more frequent if they are not included in beta strands. Residues of Ala, Ile and Arg preferably bind ethanol when they are included in an alpha helix. Ethanol molecules often make hydrogen bonds with oxygen and nitrogen atoms from the main chain of a protein. Because of this reason, the binding of ethanol may be associated with the decrease of the length of alpha helices and the disappearance of 3/10 helices. Obtained data should be useful for studies on new targets of the direct action of ethanol on enzymes, receptors, and transcription factors.
Collapse
Affiliation(s)
| | | | - Sergey Vladimirovich Lelevich
- Department of Clinical Laboratory Diagnostics, Allergology and Immunology, Grodno State Medical University, Gorkogo 80, Grodno, Belarus
| |
Collapse
|