1
|
Redell JB, Maynard ME, Hylin MJ, Hood KN, Sedlock A, Maric D, Zhao J, Moore AN, Roysam B, Pati S, Dash PK. A Combination of Low Doses of Lithium and Valproate Improves Cognitive Outcomes after Mild Traumatic Brain Injury. J Neurotrauma 2025; 42:437-453. [PMID: 39463282 PMCID: PMC11971536 DOI: 10.1089/neu.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The prevalence of mild traumatic brain injury (mTBI) is high compared with moderate and severe TBI, comprising almost 80% of all brain injuries. mTBI activates a complex cascade of biochemical, molecular, structural, and pathological changes that can result in neurological and cognitive impairments. These impairments can manifest even in the absence of overt brain damage. Given the complexity of changes triggered by mTBI, a combination of drugs that target multiple TBI-activated cascades may be required to improve mTBI outcomes. It has been previously demonstrated that cotreatment with the U.S. Food and Drug Administration (FDA)-approved drugs lithium plus valproate (Li + VPA) for 3 weeks after a moderate-to-severe controlled cortical impact injury reduced cortical tissue loss and improved motor function. Since both lithium and valproate can exhibit toxicity at high doses, it would be beneficial to determine if this combination treatment is effective when administered at low doses and for a shorter duration, and if it can improve cognitive function, after a mild diffuse TBI. In the present study, we tested if the combination of low doses of lithium (1 mEq/kg or 0.5 mEq/kg) plus valproate (20 mg/kg) administered for 3 days after a mild fluid percussion injury can improve hippocampal-dependent learning and memory. Our data show that the combination of low-dose Li + VPA improved spatial learning and memory, effects not seen when either drug was administered alone. In addition, postinjury Li + VPA treatment improved recognition memory and sociability and reduced fear generalization. Postinjury Li + VPA also reduced the number of anti-ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia counted using a convolutional neural network, indicating a reduction in neuroinflammation. These findings indicate that low-dose Li + VPA administered acutely after mTBI may have translational utility to reduce pathology and improve cognitive function.
Collapse
Affiliation(s)
- John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E. Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Michael J. Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Shibani Pati
- Departments of Pathology and Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
2
|
Moschonas EH, Steber JA, Capeci HE, Donald HM, Vozzella VJ, Bittner RA, Annas EM, Rennerfeldt PL, Cheng JP, Bondi CO, Kline AE. Pre-operative environmental enrichment does not yield a prophylactic effect against traumatic brain injury-induced neurobehavioral deficits. Exp Neurol 2025; 383:114990. [PMID: 39389162 DOI: 10.1016/j.expneurol.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The robustness of environmental enrichment (EE) in ameliorating neurobehavioral and cognitive deficits after experimental traumatic brain injury (TBI) is unequivocal. What is equivocal is whether EE can function as a prophylactic to afford resiliency and neuroprotection against TBI. We hypothesized that pre-operative EE would yield a protective effect against TBI-induced motor, cognitive, and coping deficits, and that further improvements would be conferred when EE is provided before and after TBI. To test the hypotheses, adult male rats received either 4 weeks of EE or standard (STD) housing prior to undergoing a controlled cortical impact of moderate severity (2.8 mm deformation at 4 m/s) or sham injury while under anesthesia. After injury, the rats were randomly assigned to post-operative EE or STD housing. Motor ability, spatial learning, and memory retention were assessed by beam-walk and water maze tests, respectively. Active and passive behavioral coping strategies were evaluated with the shock probe defensive burying (SPDB) test. c-Fos and cortical lesion volume were also quantified. The post-TBI enrichment groups (EE + TBI + EE and STD + TBI + EE) did not differ (p > 0.05) and performed better than the post-TBI STD-housed groups (EE + TBI + STD and STD + TBI + STD) on motor and cognition (p < 0.05). The post-TBI STD groups did not differ, regardless of whether in EE or STD living conditions before injury (p > 0.05). Moreover, both post-TBI enrichment groups performed better in the SPDB test relative to the STD + TBI + STD group (p < 0.05). c-Fos + cells were upregulated in the ipsilateral CA1 in both pre-injury EE groups relative to the pre-injury STD groups (p < 0.05). No statistical differences were observed in cortical lesion volume among the groups. Overall, these data do not support the hypothesis as no neuroprotective effect was observed with 4 weeks of pre-operative EE and no additional benefit was achieved in the TBI group receiving both pre-and-post EE relative to the TBI group receiving only post-EE. However, the data do reinforce the consistency of post-TBI EE in producing robust neurobehavioral benefits, which further supports this paradigm as a relevant preclinical model of neurorehabilitation.
Collapse
Affiliation(s)
- Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jade A Steber
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley E Capeci
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hailey M Donald
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent J Vozzella
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel A Bittner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ellen M Annas
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piper L Rennerfeldt
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Bittner RA, Greene AM, Leary JB, Donald HM, Capeci HE, Moschonas EH, Cheng JP, Bondi CO, Kline AE. Delayed-and-abbreviated environmental enrichment after traumatic brain injury confers neurobehavioral benefits similar to immediate-and-continuous exposure. Brain Res 2025; 1846:149281. [PMID: 39423964 DOI: 10.1016/j.brainres.2024.149281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Environmental enrichment (EE) consists of increased living space, complex stimuli, and social interaction that collectively confer neurobehavioral benefits in preclinical models of traumatic brain injury (TBI). The typical EE approach entails implementation immediately after surgery and continual exposure, which is not clinically applicable, as TBI patients often only receive rehabilitation after critical care, and then only for a few hours per day. We are focused on developing a clinically relevant model of neurorehabilitation by refining the timing of initiation and duration of EE exposure after TBI. The goal of this experiment is to compare the typical EE approach to paradigms where EE is delayed by 3 or 7 days after TBI and then provided for only 6 h per day, which better mimics the clinic. The hypothesis is that the delayed-and-abbreviated EE paradigms will promote neurobehavioral benefits like the typical approach of immediate-and-continuous exposure. To test the hypothesis, anesthetized adult male rats underwent a controlled cortical impact of moderate severity (2.8 mm deformation at 4 m/s) or sham injury and then were randomly assigned to post-operative EE or standard (STD) housing. Motor ability, spatial learning, and memory retention were assessed. The hypothesis was confirmed as all EE-treated groups performed better than the STD group in all behavioral assessments (p < 0.05) and did not differ from one another (p > 0.05). The ability of EE to provide significant behavioral benefits even when delayed and delivered in moderation affords further support for EE as a preclinical model of neurorehabilitation and offers greater insight into the length of the therapeutic window.
Collapse
Affiliation(s)
- Rachel A Bittner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna M Greene
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob B Leary
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hailey M Donald
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley E Capeci
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Wu M, He X, Gong Y, Wang C, Huang Y, Gao F, Dang B. Enriched environment may improve secondary brain injury after traumatic brain injury by regulating the TLR2/NF-κB signaling pathway. J Cent Nerv Syst Dis 2024; 16:11795735241301568. [PMID: 39574429 PMCID: PMC11580055 DOI: 10.1177/11795735241301568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Background Traumatic brain injury (TBI) can cause damage to the blood-brain barrier, resulting in neuroinflammatory reactions and brain edema that seriously affect the recovery of neurological function. We hypothesize that an enriched environment (EE) regulates the TLR2/NF-κB signaling pathway and thereby modulates the integrity of the blood-brain barrier to achieve neuroprotective effects. Objective This study evaluated the expression of toll-like receptor (TLR)-2 after TBI in a rat model, with the aim of determining whether TLR2/NF-κB improves secondary brain injury by inhibiting the release of inflammatory factors and reducing brain edema. Methods We established a TBI model using Sprague-Dawley rats and implemented EE intervention or TLR2 siRNA to reduce TLR2. Western-blot analysis, real-time PCR, immunofluorescence staining, ELISA, TUNEL and FJC staining, wet-dry methods, rotarod testing, and neurological scoring were then applied for analysis. Results Our results revealed that TLR2 was activated after TBI in rats and that EE or silencing of TLR2 with TLR2 siRNA reduced the level of inflammation, significantly alleviating brain edema, neuronal apoptosis, and degeneration. TBI exacerbated brain edema and nerve damage caused by TLR2/NF-κB signaling, and EE appeared to regulate neuroinflammation and brain edema by reducing TLR2. Conclusions Inhibition of TLR2 with EE might constitute a successful approach in the management of TBI.
Collapse
Affiliation(s)
- Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chaoyu Wang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
5
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
6
|
Yen HC, Chuang HJ, Hsiao WL, Tsai YC, Hsu PM, Chen WS, Han YY. Assessing the impact of early progressive mobilization on moderate-to-severe traumatic brain injury: a randomized controlled trial. Crit Care 2024; 28:172. [PMID: 38778416 PMCID: PMC11112875 DOI: 10.1186/s13054-024-04940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of neurodisability worldwide, with notably high disability rates among moderately severe TBI cases. Extensive previous research emphasizes the critical need for early initiation of rehabilitation interventions for these cases. However, the optimal timing and methodology of early mobilization in TBI remain to be conclusively determined. Therefore, we explored the impact of early progressive mobilization (EPM) protocols on the functional outcomes of ICU-admitted patients with moderate to severe TBI. METHODS This randomized controlled trial was conducted at a trauma ICU of a medical center; 65 patients were randomly assigned to either the EPM group or the early progressive upright positioning (EPUP) group. The EPM group received early out-of-bed mobilization therapy within seven days after injury, while the EPUP group underwent early in-bed upright position rehabilitation. The primary outcome was the Perme ICU Mobility Score and secondary outcomes included Functional Independence Measure motor domain (FIM-motor) score, phase angle (PhA), skeletal muscle index (SMI), the length of stay in the intensive care unit (ICU), and duration of ventilation. RESULTS Among 65 randomized patients, 33 were assigned to EPM and 32 to EPUP group. The EPM group significantly outperformed the EPUP group in the Perme ICU Mobility and FIM-motor scores, with a notably shorter ICU stay by 5.9 days (p < 0.001) and ventilation duration by 6.7 days (p = 0.001). However, no significant differences were observed in PhAs. CONCLUSION The early progressive out-of-bed mobilization protocol can enhance mobility and functional outcomes and shorten ICU stay and ventilation duration of patients with moderate-to-severe TBI. Our study's results support further investigation of EPM through larger, randomized clinical trials. Clinical trial registration ClinicalTrials.gov NCT04810273 . Registered 13 March 2021.
Collapse
Affiliation(s)
| | | | | | | | - Po-Min Hsu
- National Taiwan University Hospital, Taipei, Taiwan
| | | | - Yin-Yi Han
- National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Davis CK, Arruri V, Joshi P, Vemuganti R. Non-pharmacological interventions for traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:641-659. [PMID: 38388365 PMCID: PMC11197135 DOI: 10.1177/0271678x241234770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Heterogeneity and variability of symptoms due to the type, site, age, sex, and severity of injury make each case of traumatic brain injury (TBI) unique. Considering this, a universal treatment strategy may not be fruitful in managing outcomes after TBI. Most of the pharmacological therapies for TBI aim at modifying a particular pathway or molecular process in the sequelae of secondary injury rather than a holistic approach. On the other hand, non-pharmacological interventions such as hypothermia, hyperbaric oxygen, preconditioning with dietary adaptations, exercise, environmental enrichment, deep brain stimulation, decompressive craniectomy, probiotic use, gene therapy, music therapy, and stem cell therapy can promote healing by modulating multiple neuroprotective mechanisms. In this review, we discussed the major non-pharmacological interventions that are being tested in animal models of TBI as well as in clinical trials. We evaluated the functional outcomes of various interventions with an emphasis on the links between molecular mechanisms and outcomes after TBI.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Pallavi Joshi
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
8
|
De Hoyos G, Ramos-Sostre D, Torres-Reverón A, Barros-Cartagena B, López-Rodríguez V, Nieves-Vázquez C, Santiago-Saavedra F, Appleyard CB, Castro EM, Flores I. Efficacy of an environmental enrichment intervention for endometriosis: a pilot study. Front Psychol 2023; 14:1225790. [PMID: 37885745 PMCID: PMC10598732 DOI: 10.3389/fpsyg.2023.1225790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction We have previously shown that Environmental Enrichment (EE), a multi-modal psychosocial intervention consisting of increased social interaction, novelty, and open spaces, improved disease presentation, anxiety, and immune-related disturbances in the rat model of endometriosis. However, there is a knowledge gap regarding the effects of EE interventions in patients with this painful, inflammatory chronic disease. Aim To adapt and test the efficacy of an EE intervention on pelvic pain, mental health, perceived stress, quality of life, and systemic inflammation in endometriosis patients through a randomized clinical trial (RCT). Materials and methods A multidisciplinary team with expertise in physiology, neuroscience, psychology, and women's health adapted and implemented a two-arm RCT comparing an EE intervention with a wait-list control group. Six EE modules administered on alternate weeks were provided to patients in the intervention (N = 29); controls received education only. Survey data and biospecimens were collected at baseline, end-of-study, and 3-months post-intervention to assess pain (Brief Pain Inventory, BPI), endometriosis-related quality of life-QoL (Endometriosis Health Profile-30, EHP30), anxiety (Generalized Anxiety Disorder 7, GAD7), depression (Patient Health Questionnaire for Depression 8, PHQ8), pain catastrophizing (Pain Catastrophizing Score, PCS), stress (Perceived Stress Scale-14, PSS14), and saliva cortisol levels (AM, PM). Results Compared to the wait-list controls, participants in the EE intervention showed significantly decreased GAD-7 scores at the end of the intervention and 3-month follow-up. Depression, perceived stress, and QoL improved at the 3-month follow-up compared to baseline. While pain levels did not improve, they significantly correlated with anxiety, depression, QoL and pain catastrophizing scores. Conclusion This pilot RCT demonstrated significant improvements in anxiety and depressive symptoms, QoL, and perceived stress, supporting enriched environments as an integrative psychosocial intervention to be used as adjuvant to the standard of care for endometriosis pain.
Collapse
Affiliation(s)
- Grace De Hoyos
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Darlenne Ramos-Sostre
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Annelyn Torres-Reverón
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
- Sur180 Therapeutics, Inc., McAllen, TX, United States
| | | | | | - Cristina Nieves-Vázquez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Fanny Santiago-Saavedra
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
- Sur180 Therapeutics, Inc., McAllen, TX, United States
| | - Eida M. Castro
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Idhaliz Flores
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
- Sur180 Therapeutics, Inc., McAllen, TX, United States
- Department of Obstetrics and Gynecology, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
9
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Dill LK, Teymornejad S, Sharma R, Bozkurt S, Christensen J, Chu E, Rewell SS, Shad A, Mychasiuk R, Semple BD. Modulating chronic outcomes after pediatric traumatic brain injury: Distinct effects of social and environmental enrichment. Exp Neurol 2023; 364:114407. [PMID: 37059414 DOI: 10.1016/j.expneurol.2023.114407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Impairments in social and cognitive function are a common consequence of pediatric traumatic brain injury (TBI). Rehabilitation has the potential to promote optimal behavioral recovery. Here, we evaluated whether an enhanced social and/or cognitive environment could improve long-term outcomes in a preclinical model of pediatric TBI. Male C57Bl/6 J mice received a moderately-severe TBI or sham procedure at postnatal day 21. After one week, mice were randomized to different social conditions (minimal socialization, n = 2/cage; or social grouping, n = 6/cage), and housing conditions (standard cage, or environmental enrichment (EE), incorporating sensory, motor, and cognitive stimuli). After 8 weeks, neurobehavioral outcomes were assessed, followed by post-mortem neuropathology. We found that TBI mice exhibited hyperactivity, spatial memory deficits, reduced anxiety-like behavior, and reduced sensorimotor performance compared to age-matched sham controls. Pro-social and sociosexual behaviors were also reduced in TBI mice. EE increased sensorimotor performance, and the duration of sociosexual interactions. Conversely, social housing reduced hyperactivity and altered anxiety-like behavior in TBI mice, and reduced same-sex social investigation. TBI mice showed impaired spatial memory retention, except for TBI mice exposed to both EE and group housing. In the brain, while TBI led to significant regional tissue atrophy, social housing had modest neuroprotective effects on hippocampal volumes, neurogenesis, and oligodendrocyte progenitor numbers. In conclusion, manipulation of the post-injury environment has benefit for chronic behavioral outcomes, but the benefits are specific to the type of enrichment available. This study improves understanding of modifiable factors that may be harnessed to optimize long-term outcomes for survivors of early-life TBI.
Collapse
Affiliation(s)
- Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sadaf Teymornejad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sarah S Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
11
|
Moschonas EH, Niesman PJ, Vozzella VJ, Bittner RA, Brennan CJ, Cheng JP, Bondi CO, Kline AE. Enriching adult male rats prior to traumatic brain injury does not attenuate neurobehavioral or histological deficits. Brain Res 2023; 1807:148314. [PMID: 36878341 PMCID: PMC10081453 DOI: 10.1016/j.brainres.2023.148314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Environmental enrichment (EE) confers significant increases in neurobehavioral and cognitive recovery and decreases histological damage in various models of traumatic brain injury (TBI). However, despite EE's pervasiveness, little is known regarding its prophylactic potential. Thus, the goal of the current study was to determine whether enriching rats prior to a controlled cortical impact exerts protection as evidenced by attenuated injury-induced neurobehavioral and histological deficits relative to rats without prior EE. The hypothesis was that enrichment prior to TBI would be protective. After two weeks of EE or standard (STD) housing, anesthetized adult male rats received either a controlled cortical impact (2.8 mm deformation at 4 m/s) or sham injury and then were placed in EE or STD conditions. Motor (beam-walk) and cognitive (spatial learning) performance were assessed on post-operative days 1-5 and 14-18, respectively. Cortical lesion volume was quantified on day 21. The group that was housed in STD conditions before TBI and received post-injury EE performed significantly better in motor, cognitive, and histological outcomes vs. both groups in STD conditions regardless of whether having received pre-injury EE or not (p < 0.05). That no differences in any endpoint were revealed between the two STD-housed groups after TBI suggests that enriching rats prior to TBI does not attenuate neurobehavioral or histological deficits and therefore does not support the hypothesis.
Collapse
Affiliation(s)
- Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Peter J Niesman
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Vincent J Vozzella
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rachel A Bittner
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Connor J Brennan
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
12
|
Watson WD, Lahey S, Baum KT, Hamner T, Koterba CH, Alvarez G, Chan JB, Davis KC, DiVirgilio EK, Howarth RA, Jones K, Kramer M, Tlustos SJ, Zafiris CM, Slomine BS. The role of the Neuropsychologist across the stages of recovery from acquired brain injury: a summary from the pediatric rehabilitation Neuropsychology collaborative. Child Neuropsychol 2023; 29:299-320. [PMID: 35726723 DOI: 10.1080/09297049.2022.2086691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neuropsychologists working in a pediatric neurorehabilitation setting provide care for children and adolescents with acquired brain injuries (ABI) and play a vital role on the interdisciplinary treatment team. This role draws on influences from the field of clinical neuropsychology and its pediatric subspecialty, as well as rehabilitation psychology. This combination of specialties is uniquely suited for working with ABI across the continuum of recovery. ABI recovery often involves a changing picture that spans across stages of recovery (e.g., disorders of consciousness, confusional state, acute cognitive impairment), where each stage presents with distinctive characteristics that warrant a specific evidence-based approach. Assessment and intervention are used reciprocally to inform diagnostics, treatment, and academic planning, and to support patient and family adjustment. Neuropsychologists work with the interdisciplinary teams to collect and integrate data related to brain injury recovery and use this data for treatment planning and clinical decision making. These approaches must often be adapted and adjusted in real time as patients recover, demanding a dynamic expertise that is currently not supported through formal training curriculum or practice guidelines. This paper outlines the roles and responsibilities of pediatric rehabilitation neuropsychologists across the stages of ABI recovery with the goal of increasing awareness in order to continue to develop and formalize this role.
Collapse
Affiliation(s)
- William D Watson
- Blythedale Children's Hospital, Valhalla, New York, USA.,Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Sarah Lahey
- Department of Psychology, Brooks Rehabilitation Hospital, Jacksonville, Florida, USA
| | - Katherine T Baum
- Comprehensive Neuropsychology Services, PLLC, Paoli, Pennsylvania, USA
| | - Taralee Hamner
- Pediatric Psychology and Neuropsychology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christine H Koterba
- Pediatric Psychology and Neuropsychology, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Gabrielle Alvarez
- Department of Rehabilitation Services, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jana B Chan
- Department of Neuropsychology, Riley Hospital for Children at IU Health, Indianapolis, Indiana and Department of Neurology, IU School of Medicine, Indianapolis, Indiana, USA
| | - Kimberly C Davis
- Department of Psychology, Texas Children's Hospital, Houston, Texas, and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Robyn A Howarth
- Department of Neuropsychology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelly Jones
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Megan Kramer
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah J Tlustos
- Department of Rehabilitation, Children's Hospital Colorado and Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christina M Zafiris
- Department of Neuropsychology, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Beth S Slomine
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Nieves-Vázquez CI, Detrés-Marquéz AC, Torres-Reverón A, Appleyard CB, Llorens-De Jesús AP, Resto IN, López-Rodríguez V, Ramos-Echevarría PM, Castro EM, Flores I. Feasibility and acceptability of an adapted environmental enrichment intervention for endometriosis: A pilot study. Front Glob Womens Health 2023; 3:1058559. [PMID: 36683601 PMCID: PMC9846621 DOI: 10.3389/fgwh.2022.1058559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction We have previously shown that Environmental Enrichment (EE)-consisting of social support, novelty, and open spaces-decreased disease progression and anxiety in a rat model of endometriosis. We developed a novel EE intervention to be tested in a pilot randomized clinical trial (RCT) in patients with endometriosis, a painful, stressful disease. Objective To translate and evaluate the feasibility and acceptability of an adapted EE intervention as an adjuvant to standard-of-care for endometriosis patients. Methods Feasibility was assessed through recruitment, enrollment, and adherence rates. Acceptability was evaluated through a post-intervention survey and focus group discussion 3-months after the end of the intervention. Results Of the 103 subjects recruited, 64 were randomized to the intervention group and 39 to the control group. At the start of the intervention, the study groups consisted of 29 (intervention) and 27 (control) subjects. Enrollment rates were 45.3% and 69.2%, and adherence rates were 41.4% and 100% for the intervention and control groups, respectively. Delays resulting from natural events (earthquakes, the COVID-19 pandemic) impacted enrollment and adherence rates. The most common reasons for missing an intervention were period pain (39.1%) and work-study (34.8%). There was high acceptability (>80%) of the intervention's logistics. The majority (82.4%) of subjects would continue participating in support groups regularly, and 95.7% would recommend the intervention to other patients. Conclusions We showed that EE could be translated into an acceptable integrative multi-modal therapy perceived as valuable among participants who completed the intervention. High attrition/low adherence indicates that additional refinements would be needed to improve feasibility. Acceptability data indicate that EE has the potential to be integrated into the clinical management of patients with endometriosis and other inflammatory, painful disorders. Studies are ongoing to assess the efficacy of EE in improving pain symptoms, mental health, and quality of life (QoL).
Collapse
Affiliation(s)
| | | | - Annelyn Torres-Reverón
- Department of Basic Sciences, Ponce Health Science University, Ponce, Puerto Rico
- Sur180 Therapeutics, LLC, McAllen, TX, United States
| | - Caroline B. Appleyard
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Basic Sciences, Ponce Health Science University, Ponce, Puerto Rico
- Sur180 Therapeutics, LLC, McAllen, TX, United States
| | | | - Ivana N. Resto
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| | | | | | - Eida M. Castro
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Idhaliz Flores
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Basic Sciences, Ponce Health Science University, Ponce, Puerto Rico
- Sur180 Therapeutics, LLC, McAllen, TX, United States
- Department of Obstetrics and Gynecology, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
14
|
Tapias V, Moschonas EH, Bondi CO, Vozzella VJ, Cooper IN, Cheng JP, Lajud N, Kline AE. Environmental enrichment improves traumatic brain injury-induced behavioral phenotype and associated neurodegenerative process. Exp Neurol 2022; 357:114204. [PMID: 35973617 DOI: 10.1016/j.expneurol.2022.114204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) causes persistent cognitive impairment and neurodegeneration. Environmental enrichment (EE) refers to a housing condition that promotes sensory and social stimulation and improves cognition and motor performance but the underlying mechanisms responsible for such beneficial effects are not well defined. In this study, anesthetized adult rats received either a moderate-to-severe controlled cortical impact (CCI) or sham surgery and then were housed in either EE or standard conditions. The results showed a significant increase in protein nitration and oxidation of lipids, impaired cognition and motor performance, and augmented N-methyl-d-aspartate receptor subtype-1 (NMDAR1) levels. However, EE initiated 24 h after CCI resulted in reduced oxidative insult and microglial activation and significant improvement in beam-balance/walk performance and both spatial learning and memory. We hypothesize that following TBI there is an upstream activation of NMDAR that promotes oxidative insult and an inflammatory response, thereby resulting in impaired behavioral functioning but EE may exert a neuroprotective effect via sustained downregulation of NMDAR1.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA; Excellence Unit of the Institute of Genetics and Molecular Biology (IBGM) - Consejo Superior de Investigaciones Científicas, Valladolid 47003, Spain; Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid 47003, Spain.
| | - Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent J Vozzella
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iya N Cooper
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Minocycline fails to treat chronic traumatic brain injury-induced impulsivity and attention deficits. Exp Neurol 2022; 348:113924. [PMID: 34774860 PMCID: PMC9295442 DOI: 10.1016/j.expneurol.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) impacts millions worldwide and can cause lasting psychiatric symptoms. Chronic neuroinflammation is a characteristic of post-injury pathology and is also associated with psychiatric conditions such as ADHD and bipolar disorder. Therefore, the current study sought to determine whether TBI-induced impulsivity and inattention could be treated using minocycline, an antibiotic with anti-inflammatory properties. Rats were trained on the five-choice serial reaction time task (5CSRT), a measure of motor impulsivity and attention. After behavior was stable on the 5CSRT, rats received either a bilateral frontal TBI or sham procedure. Minocycline was given at either an early (1 h post-injury) or chronic (9 weeks post-injury) timepoint. Minocycline was delivered every 12 h for 5 days (45 mg/kg, i.p.). Behavioral testing on the 5CSRT began again after one week of recovery and continued for 12 more weeks, then rats were transcardially perfused. Impulsivity and inattention were both substantially increased following TBI. Minocycline had no therapeutic effects at either the early or late time points. TBI rats had increased lesion volume, but minocycline did not attenuate lesion size. Additionally, microglia count measured by IBA-1+ cells was only increased acutely after TBI, and minocycline did not differentially change the number of microglia in TBI rats. Despite this, minocycline had clear effects on the gut microbiome. Based on the results of this study, minocycline may have limited efficacy for post-injury psychiatric-like symptoms.
Collapse
|
16
|
Semple BD, Raghupathi R. A Pro-social Pill? The Potential of Pharmacological Treatments to Improve Social Outcomes After Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:714253. [PMID: 34489853 PMCID: PMC8417315 DOI: 10.3389/fneur.2021.714253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-induced disability in young children worldwide, and social behavior impairments in this population are a significant challenge for affected patients and their families. The protracted trajectory of secondary injury processes triggered by a TBI during early life-alongside ongoing developmental maturation-offers an extended time window when therapeutic interventions may yield functional benefits. This mini-review explores the scarce but promising pre-clinical literature to date demonstrating that social behavior impairments after early life brain injuries can be modified by drug therapies. Compounds that provide broad neuroprotection, such as those targeting neuroinflammation, oxidative stress, axonal injury and/or myelination, may prevent social behavior impairments by reducing secondary neuropathology. Alternatively, targeted treatments that promote affiliative behaviors, exemplified by the neuropeptide oxytocin, may reduce the impact of social dysfunction after pediatric TBI. Complementary literature from other early life neurodevelopmental conditions such as hypoxic ischemic encephalopathy also provides avenues for future research in neurotrauma. Knowledge gaps in this emerging field are highlighted throughout, toward the goal of accelerating translational research to support optimal social functioning after a TBI during early childhood.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia.,Department of Neurology, Alfred Health, Prahran, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
17
|
Tai WL, Sun L, Li H, Gu P, Joosten EA, Cheung CW. Additive Effects of Environmental Enrichment and Ketamine on Neuropathic Pain Relief by Reducing Glutamatergic Activation in Spinal Cord Injury in Rats. Front Neurosci 2021; 15:635187. [PMID: 33828447 PMCID: PMC8019908 DOI: 10.3389/fnins.2021.635187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) impairs mobility and often results in complications like intractable neuropathic pain. A multi-approach management of this chronic pain condition has been encouraged, but little has been explored of the field. Here, we focus on the effect and underlying mechanism of environmental enrichment (EE), which promotes voluntary social and physical activities, combined with a clinical analgesic, ketamine, on SCI-induced neuropathic pain as well as motor dysfunction. We performed T13 spinal hemisection in rats, which induced unilateral motor impairment and neuropathic pain-like behaviors in the hindlimb. Treatment regimen started a week after SCI, which consists of ketamine administration (30 mg kg–1 day–1; intramuscular) for 10 days, or EE housing for 20 days, or their combination. Paw withdrawal response to mechanical and thermal stimuli, motor function, burrowing behaviors, and body weight was monitored. Spinal segments at T13 lesion and L4–L6 were collected for histopathological and protein analyses. The joint treatment of EE and ketamine provided greater relief of pain-like behaviors and locomotor recovery than did either paradigm alone. These improvements were associated with reduced cavitation area, astrogliosis, and perilesional phosphorylation of glutamate N-methyl-D-aspartate receptor (NMDAR). Concurrently, lumbar spinal analysis of NMDAR-linked excitatory markers in hypersensitization showed reduced activation of NMDAR, mitogen-activated protein kinase (MAPK) family, nuclear factor (NF)-κB, interleukin (IL)-1β signaling, and restored excitatory amino acid transporter 2 level. Our data support a better therapeutic efficacy of the combination, EE, and ketamine, in the attenuation of neuropathic pain and motor recovery by reducing spinal glutamatergic activation, signifying a potential multifaceted neurorehabilitation strategy to improve SCI patient outcome.
Collapse
Affiliation(s)
- W L Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - L Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - H Li
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - P Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - E A Joosten
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Department of Anesthesiology and Pain Management, University Pain Centre Maastricht (UPCM), Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - C W Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. Neural Plast 2021; 2021:6682471. [PMID: 33763126 PMCID: PMC7964116 DOI: 10.1155/2021/6682471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by a complex pattern of abnormalities in resting-state functional connectivity (rsFC) and network dysfunction, which can potentially be ameliorated by rehabilitation. In our previous randomized controlled trial, we found that a 3-month neurological music therapy intervention enhanced executive function (EF) and increased grey matter volume in the right inferior frontal gyrus (IFG) in patients with moderate-to-severe TBI (N = 40). Extending this study, we performed longitudinal rsFC analyses of resting-state fMRI data using a ROI-to-ROI approach assessing within-network and between-network rsFC in the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and salience (SAL) networks, which all have been associated with cognitive impairment after TBI. We also performed a seed-based connectivity analysis between the right IFG and whole-brain rsFC. The results showed that neurological music therapy increased the coupling between the FPN and DAN as well as between these networks and primary sensory networks. By contrast, the DMN was less connected with sensory networks after the intervention. Similarly, there was a shift towards a less connected state within the FPN and SAL networks, which are typically hyperconnected following TBI. Improvements in EF were correlated with rsFC within the FPN and between the DMN and sensorimotor networks. Finally, in the seed-based connectivity analysis, the right IFG showed increased rsFC with the right inferior parietal and left frontoparietal (Rolandic operculum) regions. Together, these results indicate that the rehabilitative effects of neurological music therapy after TBI are underpinned by a pattern of within- and between-network connectivity changes in cognitive networks as well as increased connectivity between frontal and parietal regions associated with music processing.
Collapse
|
19
|
Manole MD, Hook MJA, Nicholas MA, Nelson BP, Liu AC, Stezoski QC, Rowley AP, Cheng JP, Alexander H, Moschonas EH, Bondi CO, Kline AE. Preclinical neurorehabilitation with environmental enrichment confers cognitive and histological benefits in a model of pediatric asphyxial cardiac arrest. Exp Neurol 2021; 335:113522. [PMID: 33152354 PMCID: PMC7954134 DOI: 10.1016/j.expneurol.2020.113522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Pediatric asphyxial cardiac arrest (ACA) often leaves children with physical, cognitive, and emotional disabilities that affect overall quality of life, yet rehabilitation is neither routinely nor systematically provided. Environmental enrichment (EE) is considered a preclinical model of neurorehabilitation and thus we sought to investigate its efficacy in our established model of pediatric ACA. Male Sprague-Dawley rat pups (post-natal day 16-18) were randomly assigned to ACA (9.5 min) or Sham injury. After resuscitation, the rats were assigned to 21 days of EE or standard (STD) housing during which time motor, cognitive, and anxiety-like (i.e., affective) outcomes were assessed. Hippocampal CA1 cells were quantified on post-operative day-22. Both ACA + STD and ACA + EE performed worse on beam-balance vs. Sham controls (p < 0.05) and did not differ from one another overall (p > 0.05); however, a single day analysis on the last day of testing revealed that the ACA + EE group performed better than the ACA + STD group (p < 0.05) and did not differ from the Sham controls (p > 0.05). Both Sham groups performed better than ACA + STD (p < 0.05) but did not differ from ACA + EE (p > 0.05) in the open field test. Spatial learning and declarative memory were improved and CA1 neuronal loss was attenuated in the ACA + EE vs. ACA + STD group (p < 0.05). Collectively, the data suggest that providing rehabilitation after pediatric ACA can reduce histopathology and improve motor and cognitive ability.
Collapse
Affiliation(s)
- Mioara D Manole
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Marcus J A Hook
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Melissa A Nicholas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brittany P Nelson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Adanna C Liu
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Quinn C Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Andrew P Rowley
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jeffrey P Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Henry Alexander
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care, Medicine University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eleni H Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Corina O Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anthony E Kline
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care, Medicine University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
20
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Dávila G, Moyano MP, Edelkraut L, Moreno-Campos L, Berthier ML, Torres-Prioris MJ, López-Barroso D. Pharmacotherapy of Traumatic Childhood Aphasia: Beneficial Effects of Donepezil Alone and Combined With Intensive Naming Therapy. Front Pharmacol 2020; 11:1144. [PMID: 32848757 PMCID: PMC7411310 DOI: 10.3389/fphar.2020.01144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
At present, language therapy is the only available treatment for childhood aphasia (CA). Studying new interventions to augment and hasten the benefits provided by language therapy in children is strongly needed. CA frequently emerges as a consequence of traumatic brain injury and, as in the case of adults, it may be associated with dysfunctional activity of neurotransmitter systems. The use of cognitive-enhancing drugs, alone or combined with aphasia therapy, promotes improvement of language deficits in aphasic adults. In this study we report the case of a 9-year-old right-handed girl, subject P, who had chronic anomic aphasia associated with traumatic lesions in the left temporal-parietal cortex. We performed a single-subject, open-label study encompassing administration of the cholinergic agent donepezil (DP) alone during 12 weeks, followed by a combination of DP and intensive naming therapy (INT) for 2 weeks and thereafter by a continued treatment of DP alone during 12 weeks, a 4-week washout period, and another 2 weeks of INT. Four comprehensive language and neuropsychological evaluations were performed at different timepoints along the study, and multiple naming evaluations were performed after each INT in order to assess performance in treated and untreated words. Structural magnetic resonance imaging (MRI) was performed at baseline. MRI revealed two focal lesions in the left hemisphere, one large involving the posterior inferior and middle temporal gyri and another comprising the angular gyrus. Overall, baseline evaluation disclosed marked impairment in naming with mild-to-moderate compromise of spontaneous speech, repetition, and auditory comprehension. Executive and attention functions were also affected, but memory, visuoconstructive, and visuoperceptive functions were preserved. Treatment with DP alone significantly improved spontaneous speech, auditory comprehension, repetition, and picture naming, in addition to processing speed, selective, and sustained attention. Combined DP-INT further improved naming. After washout of both interventions, most of these beneficial changes remained. Importantly, DP produced no side effects and subject P attained the necessary level of language competence to return to regular schooling. In conclusion, the use of DP alone and in combination with INT improved language function and related cognitive posttraumatic deficits in a child with acquired aphasia. Further studies in larger samples are warranted.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María Pilar Moyano
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Lorena Moreno-Campos
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
23
|
Experience Recruits MSK1 to Expand the Dynamic Range of Synapses and Enhance Cognition. J Neurosci 2020; 40:4644-4660. [PMID: 32376781 PMCID: PMC7294801 DOI: 10.1523/jneurosci.2765-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Experience powerfully influences neuronal function and cognitive performance, but the cellular and molecular events underlying the experience-dependent enhancement of mental ability have remained elusive. In particular, the mechanisms that couple the external environment to the genomic changes underpinning this improvement are unknown. To address this, we have used male mice harboring an inactivating mutation of mitogen- and stress-activated protein kinase 1 (MSK1), a brain-derived neurotrophic factor (BDNF)-activated enzyme downstream of the mitogen-activated protein kinase (MAPK) pathway. We show that MSK1 is required for the full extent of experience-induced improvement of spatial memory, for the expansion of the dynamic range of synapses, exemplified by the enhancement of hippocampal long-term potentiation (LTP) and long-term depression (LTD), and for the regulation of the majority of genes influenced by enrichment. In addition, and unexpectedly, we show that experience is associated with an MSK1-dependent downregulation of key MAPK and plasticity-related genes, notably of EGR1/Zif268 and Arc/Arg3.1, suggesting the establishment of a novel genomic landscape adapted to experience. By coupling experience to homeostatic changes in gene expression MSK1, represents a prime mechanism through which the external environment has an enduring influence on gene expression, synaptic function, and cognition. SIGNIFICANCE STATEMENT Our everyday experiences strongly influence the structure and function of the brain. Positive experiences encourage the growth and development of the brain and support enhanced learning and memory and resistance to mood disorders such as anxiety. While this has been known for many years, how this occurs is not clear. Here, we show that many of the positive aspects of experience depend on an enzyme called mitogen- and stress-activated protein kinase 1 (MSK1). Using male mice with a mutation in MSK1, we show that MSK1 is necessary for the majority of gene expression changes associated with experience, extending the range over which the communication between neurons occurs, and for both the persistence of memory and the ability to learn new task rules.
Collapse
|
24
|
Shaw A, Arnold LD, Privitera L, Whitfield PD, Doherty MK, Morè L. A proteomic signature for CNS adaptations to the valence of environmental stimulation. Behav Brain Res 2020; 383:112515. [PMID: 32006564 DOI: 10.1016/j.bbr.2020.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Environmental Enrichment leads to a significant improvement in long-term performance across a range of cognitive functions in mammals and it has been shown to produce an increased synaptic density and neurogenesis. Nevertheless it is still an open question as to whether some key aspects of spatial learning & memory and procedural learning might be embodied by different molecular pathways to those of social cognition. Associated with synaptic changes and potentially underlying conditions, the Ras-ERK pathway has been proposed to be the primary mediator of in vivo adaptations to environmental enrichment, acting via the downstream Ras-ERK signalling kinase MSK1 and the transcription factor CREB. Herein, we show that valence of environmental stimulation increased social competition and that this is associated with a specific proteomic signature in the frontal lobe but notably not in the hippocampus. Specifically, we show that altering the valence of environmental stimuli affected the level of social competition, with mice from negatively enriched environments winning significantly more encounters-even though mice from positive were bigger and should display dominance. This behavioural phenotype was accompanied by changes in the proteome of the fronto-ventral pole of the brain, with a differential increase in the relative abundance of proteins involved in the mitochondrial metabolic processes of the TCA cycle and respiratory processes. Investigation of this proteomic signature may pave the way for the elucidation of novel pathways underpinning the behavioural changes caused by negative enrichment and further out understanding of conditions whose core feature is increased social competition.
Collapse
Affiliation(s)
- Andrew Shaw
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Luke D Arnold
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh, EH8 9JZ, UK & School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
25
|
Siponkoski ST, Martínez-Molina N, Kuusela L, Laitinen S, Holma M, Ahlfors M, Jordan-Kilkki P, Ala-Kauhaluoma K, Melkas S, Pekkola J, Rodriguez-Fornells A, Laine M, Ylinen A, Rantanen P, Koskinen S, Lipsanen J, Särkämö T. Music Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: Evidence from a Randomized Controlled Trial. J Neurotrauma 2020; 37:618-634. [DOI: 10.1089/neu.2019.6413] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sini-Tuuli Siponkoski
- Department of Psychology and Logopedics, Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Noelia Martínez-Molina
- Department of Psychology and Logopedics, Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Linda Kuusela
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Milla Holma
- Musiikkiterapiaosuuskunta InstruMental (Music Therapy Cooperative InstruMental), Helsinki, Finland
| | | | | | - Katja Ala-Kauhaluoma
- Ludus Oy Tutkimus- ja kuntoutuspalvelut (Assessment and Intervention Services), Helsinki, Finland
| | - Susanna Melkas
- Department of Neurology and Brain Injury Outpatient Clinic, Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Pekkola
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, Helsinki, Finland
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Aarne Ylinen
- Department of Neurology and Brain Injury Outpatient Clinic, Helsinki University Central Hospital, Helsinki, Finland
- Tampere University Hospital, Tampere, Finland
| | | | - Sanna Koskinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lipsanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Department of Psychology and Logopedics, Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Wei Z, Meng X, El Fatimy R, Sun B, Mai D, Zhang J, Arora R, Zeng A, Xu P, Qu S, Krichevsky AM, Selkoe DJ, Li S. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiol Dis 2020; 134:104617. [PMID: 31669733 PMCID: PMC7243177 DOI: 10.1016/j.nbd.2019.104617] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
As the most common cause of progressive cognitive decline in humans, Alzheimer's disease (AD) has been intensively studied, but the mechanisms underlying its profound synaptic dysfunction remain unclear. Here we confirm that exposing wild-type mice to an enriched environment (EE) facilitates signaling in the hippocampus that promotes long-term potentiation (LTP). Exposing the hippocampus of mice kept in standard housing to soluble Aβ oligomers impairs LTP, but EE can fully prevent this. Mechanistically, the key molecular features of the EE benefit are an upregulation of miRNA-132 and an inhibition of histone deacetylase (HDAC) signaling. Specifically, soluble Aβ oligomers decreased miR-132 expression and increased HDAC3 levels in cultured primary neurons. Further, we provide evidence that HDAC3 is a direct target of miR-132. Overexpressing miR-132 or injecting an HDAC3 inhibitor into mice in standard housing mimics the benefits of EE in enhancing hippocampal LTP and preventing hippocampal impairment by Aβ oligomers in vivo. We conclude that EE enhances hippocampal synaptic plasticity by upregulating miRNA-132 and reducing HDAC3 signaling in a way that counteracts the synaptotoxicity of human Aβ oligomers. Our findings provide a rationale for prolonged exposure to cognitive novelty and/or epigenetic modulation to lessen the progressive effects of Aβ accumulation during human brain aging.
Collapse
Affiliation(s)
- Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Rachid El Fatimy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Bowen Sun
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dongmei Mai
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Junfang Zhang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, HMS Initiative for RNA Medicine, Zhejiang, China
| | - Ramil Arora
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Ailiang Zeng
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
27
|
Abstract
Environmental enrichment is known to be beneficial for cognitive improvement. In many animal models of neurological disorders and brain injury, EE has also demonstrated neuroprotective benefits in neurodegenerative diseases and in improving recovery after stroke or traumatic brain injury. The exact underlying mechanism for these phenomena has been unclear. Recent findings have now indicated that neuronal activity elicited by environmental enrichment induces Ca2+ influx in dorsal root ganglion neurons results in lasting enhancement of CREB-binding protein-mediated histone acetylation. This, in turn, increases the expression of pro-regeneration genes and promotes axonal regeneration. This mechanism associated with neuronal activity elicited by environmental enrichment-mediated pathway is one of several epigenetic mechanisms which modulate axon regeneration upon injury that has recently come to light. The other prominent mechanisms, albeit not yet directly associated with environmental enrichment, include DNA methylation/demethylation and N6-methyladenosine modification of transcripts. In this brief review, I highlight recent work that has shed light on the epigenetic basis of environmental enrichment-based axon regeneration, and discuss the mechanism and pathways involved. I further speculate on the implications of the findings, in conjunction with the other epigenetic mechanisms, that could be harness to promote axon regeneration upon injury.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
28
|
Bleimeister IH, Wolff M, Lam TR, Brooks DM, Patel R, Cheng JP, Bondi CO, Kline AE. Environmental enrichment and amantadine confer individual but nonadditive enhancements in motor and spatial learning after controlled cortical impact injury. Brain Res 2019; 1714:227-233. [PMID: 30876859 DOI: 10.1016/j.brainres.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Environmental enrichment (EE) and amantadine (AMT) enhance motor and cognitive outcome after experimental traumatic brain injury (TBI). However, there are no data on the effects of combining these two therapies. Hence, the aim of the current study was to combine EE and AMT after TBI to determine if their net effect further enhances motor and cognitive performance. Anesthetized adult male rats received either a cortical impact of moderate severity or sham injury and then were randomly assigned to EE or standard (STD) housing and once daily administration of AMT (20 mg/kg; i.p.) or saline vehicle (VEH, 1 mL/kg; i.p.) beginning 24 h after injury for 19 days. Motor and cognitive function were assessed on post-surgical days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 21. There were no statistical differences among the sham groups regardless of therapy, so the data were pooled. EE, AMT, and their combination (EE + AMT) improved beam-balance, but only EE and EE + AMT enhanced beam-walking. All three treatment paradigms improved spatial learning and memory relative to the VEH-treated STD controls (p < 0.05). No differences were revealed between the EE groups, regardless of treatment, but both were better than the AMT-treated STD group on beam-walking and spatial learning (p < 0.05). Both EE groups equally reduced cortical lesion volume relative to the STD-housed AMT and VEH groups (p < 0.05). The results indicate that although beneficial on their own, EE + AMT do not provide additional benefits after TBI. It is important to note that the lack of additive effects using the current treatment and behavioral protocols does not detract from the benefits of each individual therapy. The findings provide insight for future combination studies.
Collapse
Affiliation(s)
- Isabel H Bleimeister
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Mia Wolff
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Tracey R Lam
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Derrick M Brooks
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Reece Patel
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
29
|
Kelly Á, Hannan AJ. Therapeutic impacts of environmental enrichment: Neurobiological mechanisms informing molecular targets for enviromimetics. Neuropharmacology 2019; 145:1-2. [DOI: 10.1016/j.neuropharm.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Lajud N, Díaz-Chávez A, Radabaugh HL, Cheng JP, Rojo-Soto G, Valdéz-Alarcón JJ, Bondi CO, Kline AE. Delayed and Abbreviated Environmental Enrichment after Brain Trauma Promotes Motor and Cognitive Recovery That Is Not Contingent on Increased Neurogenesis. J Neurotrauma 2018; 36:756-767. [PMID: 30051757 DOI: 10.1089/neu.2018.5866] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Environmental enrichment (EE) confers motor and cognitive recovery in pre-clinical models of traumatic brain injury (TBI), and neurogenesis has been attributed to mediating the benefits. Whether that ascription is correct has not been fully investigated. Hence, the goal of the current study is to further clarify the possible role of learning-induced hippocampal neurogenesis on functional recovery after cortical impact or sham injury by utilizing two EE paradigms (i.e., early + continuous, initiated immediately after TBI and presented 24 h/day; and delayed + abbreviated, initiated 4 days after TBI for 6 h/day) and comparing them to one another as well as to standard (STD) housed controls. Motor and cognitive performance was assessed on post-operative Days 1-5 and 14-19, respectively, for the STD and early + continuous EE groups and on Days 4-8 and 17-22, for the delayed + abbreviated EE groups. Rats were injected with bromodeoxyuridine (BrdU, 500 mg/ kg; intraperitoneally) for 3 days (12 h apart) before cognitive training and sacrificed 1 week later for quantification of BrdU+ and doublecortin (DCX+) labeled cells. Both early + continuous and delayed + abbreviated EE promoted motor and cognitive recovery after TBI, relative to STD (p < 0.05), and did not differ from one another (p > 0.05). However, only early + continuous EE increased DCX+ cells beyond the level of STD-housed controls (p < 0.05). No effect of EE on non-injured controls was observed. Based on these data, two novel conclusions emerged. First, EE does not need to be provided early and continuously after TBI to confer benefits, which lends credence to the delayed + abbreviated EE paradigm as a relevant pre-clinical model of neurorehabilitation. Second, the functional recovery observed after TBI in the delayed + abbreviated EE paradigm is not contingent on increased hippocampal neurogenesis. Future studies will elucidate alternate viable mechanisms mediating the benefits induced by EE.
Collapse
Affiliation(s)
- Naima Lajud
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social , Morelia, Michoacán, Mexico
| | - Arturo Díaz-Chávez
- 3 División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social , Morelia, Michoacán, Mexico
| | - Hannah L Radabaugh
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey P Cheng
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Georgina Rojo-Soto
- 3 División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social , Morelia, Michoacán, Mexico
| | - Juan J Valdéz-Alarcón
- 9 Centro de Estudios Multidisciplinarios en Biotecnología-Benemerita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo , Michoacán, Mexico
| | - Corina O Bondi
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Department of Neurobiology, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for Neuroscience , University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anthony E Kline
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for Neuroscience , University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Center for the Neural Basis of Cognition , University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,8 Department of Psychology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|