1
|
Chen J, Fang Z, Zhang X, Zheng Y, Chen Z. How Fear Memory is Updated: From Reconsolidation to Extinction? Neurosci Bull 2025:10.1007/s12264-025-01367-7. [PMID: 40205305 DOI: 10.1007/s12264-025-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/21/2024] [Indexed: 04/11/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuowen Fang
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Luyten L, Chalkia A, Schnell AE, Özcan B, Leng L, Schroyens N, Van Oudenhove L, Vanpaemel W, Beckers T. No harmful effect of propranolol administered prior to fear memory extinction in rats and humans. J Anxiety Disord 2024; 104:102870. [PMID: 38733644 PMCID: PMC7615999 DOI: 10.1016/j.janxdis.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Exposure therapy is an evidence-based treatment option for anxiety-related disorders. Many patients also take medication that could, in principle, affect exposure therapy efficacy. Clinical and laboratory evidence indeed suggests that benzodiazepines may have detrimental effects. Large clinical trials with propranolol, a common beta-blocker, are currently lacking, but several preclinical studies do indicate impaired establishment of safety memories. Here, we investigated the effects of propranolol given prior to extinction training in 9 rat studies (N = 215) and one human study (N = 72). A Bayesian meta-analysis of our rat studies provided strong evidence against propranolol-induced extinction memory impairment during a drug-free test, and the human study found no significant difference with placebo. Two of the rat studies actually suggested a small beneficial effect of propranolol. Lastly, two rat studies with a benzodiazepine (midazolam) group provided some evidence for a harmful effect on extinction memory, i.e., impaired extinction retention. In conclusion, our midazolam findings are in line with prior literature (i.e., an extinction retention impairment), but this is not the case for the 10 studies with propranolol. Our data thus support caution regarding the use of benzodiazepines during exposure therapy, but argue against a harmful effect of propranolol on extinction learning.
Collapse
Affiliation(s)
- Laura Luyten
- Centre for Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Anastasia Chalkia
- Centre for Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anna Elisabeth Schnell
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Burcu Özcan
- Centre for Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lu Leng
- Centre for Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Natalie Schroyens
- Centre for Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Translational Research in Gastro-Intestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Wolf Vanpaemel
- Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Tom Beckers
- Centre for Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Szeleszczuk Ł, Frączkowski D. Propranolol versus Other Selected Drugs in the Treatment of Various Types of Anxiety or Stress, with Particular Reference to Stage Fright and Post-Traumatic Stress Disorder. Int J Mol Sci 2022; 23:10099. [PMID: 36077489 PMCID: PMC9456064 DOI: 10.3390/ijms231710099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Propranolol, a non-cardioselective β1,2 blocker, is most commonly recognised for its application in the therapy of various cardiovascular conditions, such as hypertension, coronary artery disease, and tachyarrhythmias. However, due to its ability to cross the blood-brain barrier and affinity towards multiple macromolecules, not only adrenoreceptors, it has also found application in other fields. For example, it is one of the very few medications successfully applied in the treatment of stage fright. This review focuses on the application of propranolol in the treatment of various types of anxiety and stress, with particular reference to stage fright and post-traumatic stress disorder (PTSD). Both mechanisms of action as well as comparison with other therapies are presented. As those indications for propranolol are, in most countries, considered off-label, this review aims to gather information that can be useful while making a decision about the choice of propranolol as a drug in the treatment of those mental conditions.
Collapse
Affiliation(s)
- Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland
| | | |
Collapse
|
4
|
Acute stress leaves fear generalization in healthy individuals intact. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:372-389. [PMID: 33629258 PMCID: PMC8121734 DOI: 10.3758/s13415-021-00874-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
Because threatening situations often occur in a similar manner, the generalization of fear to similar situations is adaptive and can avoid harm to the organism. However, the overgeneralization of fear to harmless stimuli is maladaptive and assumed to contribute to anxiety disorders. Thus, elucidating factors that may modulate fear (over)generalization is important. Based on the known effects of acute stress on learning, which are at least partly due to noradrenergic arousal, we investigated whether stress may promote fear overgeneralization and whether we could counteract this effect by reducing noradrenergic arousal. In a placebo-controlled, double-blind, between-subjects design, 120 healthy participants underwent a fear-conditioning procedure on Day 1. Approximately 24 hours later, participants received orally either a placebo or the beta-adrenergic receptor antagonist propranolol and were exposed to a stress or control manipulation before they completed a test of fear generalization. Skin conductance responses as well as explicit rating data showed a successful acquisition of conditioned fear on Day 1 and a pronounced fear generalization 24 hours later. Although physiological data confirmed the successful stress manipulation and reduction of noradrenergic arousal, the extent of fear generalization remained unaffected by stress and propranolol. The absence of a stress effect on fear generalization was confirmed by a second study and a Bayesian analysis across both data sets. Our findings suggest that acute stress leaves fear generalization processes intact, at least in a sample of healthy, young individuals.
Collapse
|
5
|
Bui E, King F, Melaragno A. Pharmacotherapy of anxiety disorders in the 21st century: A call for novel approaches. Gen Psychiatr 2019; 32:e100136. [PMID: 31922087 PMCID: PMC6936967 DOI: 10.1136/gpsych-2019-100136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
While limited advances have occurred in the past 30 years in the pharmacological management of anxiety and stress-related disorders, novel molecular pathways both within and without the monoamine systems are currently under investigation and offer promising new avenues for more effective future treatments. Enhancing psychotherapy approaches with pharmacological compounds offers the potential to not only transform the standard of care of these conditions, but more broadly would introduce a paradigm shift in the way medications and their role in psychiatric care are conceptualised. Although further human trials and more translational research are sorely needed, continuing to pursue innovative mechanisms and treatments is hoped to yield substantial results in the coming decades and a departure from the reliance on chemical agents of the 20th century.
Collapse
Affiliation(s)
- Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Franklin King
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus during unpaired extinction does not prevent extinction of conditioned eyeblink responses or conditioning-specific reflex modification. Behav Neurosci 2019; 133:398-413. [PMID: 30869952 PMCID: PMC6625864 DOI: 10.1037/bne0000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For almost 75 years, classical eyeblink conditioning has been an invaluable tool for assessing associative learning processes across many species, thanks to its high translatability and well-defined neural circuitry. Our laboratory has adapted the paradigm to extensively detail associative changes in the rabbit reflexive eyeblink response (unconditioned response, UR), characterized by postconditioning increases in the frequency, size, and latency of the UR when the periorbital shock unconditioned stimulus (US) is presented alone, termed conditioning-specific reflex modification (CRM). Because the shape and timing of CRM closely resembles the conditioned eyeblink response (CR) to the tone conditioned stimulus (CS), we previously tested whether CRs and CRM share a common neural substrate, the interpositus nucleus of the cerebellum (IP), and found that IP inactivation during conditioning blocked the development of both CRs and the timing aspect of CRM. The goal of the current study was to examine whether extinction of CRs and CRM timing, accomplished simultaneously with unpaired CS/US extinction, also involves the IP. Results showed that muscimol inactivation of the IP during extinction blocked CR expression but not extinction of CRs or CRM timing, contrasting with the literature showing IP inactivation prevents CR extinction during CS-alone presentations. The continued presence of the US throughout the unpaired extinction procedure may have been sufficient to overcome IP blockade, promoting plasticity in the cerebellar cortex and/or extracerebellar components of the eyeblink conditioning pathway that can modulate extinction of CRs and CRM timing. Results therefore add support to the distributed plasticity view of cerebellar learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren B. Burhans
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Bernard G. Schreurs
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
Rorabaugh BR, Bui AD, Seeley SL, Eisenmann ED, Rose RM, Johnson BL, Huntley MR, Heikkila ME, Zoladz PR. Myocardial hypersensitivity to ischemic injury is not reversed by clonidine or propranolol in a predator-based rat model of posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:117-124. [PMID: 30194949 PMCID: PMC6249040 DOI: 10.1016/j.pnpbp.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
Individuals with posttraumatic stress disorder (PTSD) are at increased risk for cardiovascular disease. We previously reported that a predator-based model of PTSD increases myocardial sensitivity to ischemic injury. Heightened sympathetic signaling has a well-established role in the formation of anxiety associated with PTSD and may also contribute to worsening of myocardial injury in the ischemic heart. Thus, we examined whether suppression of sympathetic tone protects the ischemic heart in rats subjected to this model of PTSD. Rats were treated with saline or clonidine throughout the 31-day stress paradigm. Behavior on the elevated plus maze (EPM) was assessed on Day 32, and hearts were subjected to an ischemic insult on day 33. Stressed rats exhibited increased anxiety on the EPM and significantly larger myocardial infarcts following ischemia. Clonidine reversed the anxiety-like behavior but had no impact on infarct size. In a subsequent experiment, rats were treated with propranolol in their drinking water throughout the stress paradigm. Propranolol had no effect on either anxiety or myocardial sensitivity to ischemic injury. These findings suggest that the myocardial hypersensitivity to ischemic injury observed in this model is not caused by increased sympathetic tone or chronic β-adrenergic receptor signaling.
Collapse
Affiliation(s)
- Boyd R. Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, OH, USA,Correspondence: Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, 525 South Main Street, Ada, OH, 45810 USA,
| | - Albert D. Bui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Sarah L. Seeley
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Eric D. Eisenmann
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH, USA
| | - Robert M. Rose
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH, USA
| | - Brandon L. Johnson
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH, USA
| | - Madelaine R. Huntley
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH, USA
| | - Megan E. Heikkila
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH, USA
| | - Phillip R. Zoladz
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, OH, USA
| |
Collapse
|
8
|
Propranolol prevents cerebral blood flow changes and pain-related behaviors in migraine model mice. Biochem Biophys Res Commun 2019; 508:445-450. [DOI: 10.1016/j.bbrc.2018.11.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
9
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
10
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
11
|
Robinson S, Christ CC, Cahill MM, Aldrich SJ, Taylor-Yeremeeva E. Voluntary exercise or systemic propranolol ameliorates stress-related maladaptive behaviors in female rats. Physiol Behav 2018; 198:120-133. [PMID: 30336229 DOI: 10.1016/j.physbeh.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Many people will experience at least one traumatic event in their lifetime, with up to 20% developing Post-Traumatic Stress Disorder (PTSD) or PTSD-like symptoms. In addition, the likelihood that females will develop PTSD after trauma is more than twice that of males. Despite its prevalence, current treatment strategies for trauma victims are limited and substantial portions of affected individuals remain resistant to treatment, suggesting that additional interventions are necessary. Using an animal model of traumatic stress, the present studies tested the hypothesis that either voluntary exercise and/or administration of the adrenergic beta-receptor antagonist propranolol, would ameliorate stress-related maladaptive behaviors. In Study 1 four groups of female rats were exposed to a sequence of stressors that included anesthesia, restraint, forced swim, exposure to predator scent and fear conditioning. Rats then underwent re-exposure sessions in which stress-related conditioned stimuli were presented. In addition to re-exposure, stressed rats were treated with propranolol (10 mg/kg) and/or given the opportunity to engage in voluntary wheel running intermittently for 4 weeks. Stress-associated maladaptive behavior was assessed using the elevated plus and open field mazes and fear memory tests. Cognitive ability was assessed using a novel odor recognition task. A main effect of exercise on behaviors related to anxiety and resilience was observed, but neither a main effect of propranolol nor a synergistic effect of propranolol and exercise were observed. Neither stress induction nor treatment influenced recognition memory. In contrast, in Study 2 in which the timing and dosage of propranolol (0.25-2.0 mg/kg), and the number and timing of re-exposure sessions were adjusted, propranolol produced both a reduction in anxiety-like behaviors as well as resilience to a subsequent stressor. These results are consistent with the notion that combining re-exposure therapy with additional interventions is beneficial for female trauma victims. Furthermore, the findings support the view that in pre-clinical models, voluntary exercise, which bolsters hippocampal function and propranolol, which affects amygdala-dependent memory reconsolidation and peripheral noradrenergic signaling, can ameliorate stress-related symptoms.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States.
| | - Christa C Christ
- Department of Psychology, University of South Carolina Upstate, Spartanburg, SC 29303, United States
| | - Margaret M Cahill
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| | - Sara J Aldrich
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| | - Elisa Taylor-Yeremeeva
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| |
Collapse
|