1
|
Adasme-Reyes S, Fuentes J, Gutiérrez-Vega I, Isla E, Pérez V, Ponce C, Quilaqueo ME, Herrera-Marschitz M, Quintanilla ME, Vásquez D, Rivera-Meza M. Pharmacological activators of ALDH2: A new strategy for the treatment of alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:153-177. [PMID: 39523053 DOI: 10.1016/bs.irn.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In mammals, ethanol is metabolized to acetaldehyde mainly by the liver alcohol dehydrogenase (ADH), and acetaldehyde is subsequently oxidized to acetate by mitochondrial aldehyde dehydrogenase (ALDH2). The presence of an inactive variant of ALDH2 or the use of inhibitors of this enzyme leads to an accumulation of acetaldehyde after ethanol consumption, generating an aversive reaction that inhibits subsequent alcohol intake. However, experimental evidence shows that acetaldehyde has potent rewarding effects at the central level, suggesting that acetaldehyde would be responsible for the addictive effect of alcohol. Alda-1 is an organic molecule that acts as a pharmacological activator of ALDH2. Studies in animal models of alcohol use disorders (AUD; i.e. alcoholism) have shown that Alda-1 can inhibit the acquisition, the chronic intake, and the relapse of alcohol consumption. These effects are reversible without any effects on water consumption or other natural reinforcer such as saccharin. It has also been reported that Alda-1 can act as a protective agent from the toxic effects on various tissues and organs mediated by ethanol-derived acetaldehyde, including liver damage, cancer, and central nervous system (CNS) alterations. Using in silico tools such as molecular docking the identification of important molecular interactions between Alda-1 and ALDH2 has been demonstrated, identifying new molecules with higher pharmacological features. Thus, there is now preclinical evidence supporting the use of activators of ALDH2 as a pharmacological strategy for the treatment of AUD.
Collapse
Affiliation(s)
- Sofía Adasme-Reyes
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Juan Fuentes
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Ignacio Gutiérrez-Vega
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Eduardo Isla
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Vicente Pérez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Carolina Ponce
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - María Elena Quilaqueo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile.
| |
Collapse
|
2
|
Lehner T, Gao B, Mackowiak B. Alcohol metabolism in alcohol use disorder: a potential therapeutic target. Alcohol Alcohol 2024; 59:agad077. [PMID: 37950904 PMCID: PMC10783952 DOI: 10.1093/alcalc/agad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023] Open
Abstract
Ethanol metabolism plays an essential role in how the body perceives and experiences alcohol consumption, and evidence suggests that modulation of ethanol metabolism can alter the risk for alcohol use disorder (AUD). In this review, we explore how ethanol metabolism, mainly via alcohol dehydrogenase and aldehyde dehydrogenase 2 (ALDH2), contributes to drinking behaviors by integrating preclinical and clinical findings. We discuss how alcohol dehydrogenase and ALDH2 polymorphisms change the risk for AUD, and whether we can harness that knowledge to design interventions for AUD that alter ethanol metabolism. We detail the use of disulfiram, RNAi strategies, and kudzu/isoflavones to inhibit ALDH2 and increase acetaldehyde, ideally leading to decreases in drinking behavior. In addition, we cover recent preclinical evidence suggesting that strategies other than increasing acetaldehyde-mediated aversion can decrease ethanol consumption, providing other potential metabolism-centric therapeutic targets. However, modulating ethanol metabolism has inherent risks, and we point out some of the key areas in which more data are needed to mitigate these potential adverse effects. Finally, we present our opinions on the future of treating AUD by the modulation of ethanol metabolism.
Collapse
Affiliation(s)
- Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, United States
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, United States
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, United States
| |
Collapse
|
3
|
Quilaqueo ME, Adasme S, Solís-Egaña F, Quintanilla ME, Vásquez D, Morales P, Herrera-Marschitz M, Rivera-Meza M. The administration of Alda-1, an activator of ALDH2, inhibits relapse-like ethanol intake in female alcohol-preferring UChB rats. Life Sci 2023; 328:121876. [PMID: 37348813 DOI: 10.1016/j.lfs.2023.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
AIMS Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.
Collapse
Affiliation(s)
- María Elena Quilaqueo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Sofía Adasme
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Fresia Solís-Egaña
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | | | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Chile; Department of Neuroscience, Faculty of Medicine, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| | | | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
4
|
Quintanilla ME, Israel Y. Role of Metabolism on Alcohol Preference, Addiction, and Treatment. Curr Top Behav Neurosci 2023. [PMID: 37221350 DOI: 10.1007/7854_2023_422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies presented in this chapter show that: (1) in the brain, ethanol is metabolized by catalase to acetaldehyde, which condenses with dopamine forming salsolinol; (2) acetaldehyde-derived salsolinol increases the release of dopamine mediating, via opioid receptors, the reinforcing effects of ethanol during the acquisition of ethanol consumption, while (3) brain acetaldehyde does not influence the maintenance of chronic ethanol intake, it is suggested that a learned cue-induced hyperglutamatergic system takes precedence over the dopaminergic system. However, (4) following a prolonged ethanol deprivation, the generation of acetaldehyde in the brain again plays a role, contributing to the increase in ethanol intake observed during ethanol re-access, called the alcohol deprivation effect (ADE), a model of relapse behavior; (5) naltrexone inhibits the high ethanol intake seen in the ADE condition, suggesting that acetaldehyde-derived salsolinol via opioid receptors also contributes to the relapse-like drinking behavior. The reader is referred to glutamate-mediated mechanisms that trigger the cue-associated alcohol-seeking and that also contribute to triggering relapse.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Centro de Medicina Regenerativa, ICM Clinica Alemana-Universidad de Desarrollo, Santiago, Chile
| |
Collapse
|
5
|
Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11071374. [PMID: 35883865 PMCID: PMC9311529 DOI: 10.3390/antiox11071374] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a highly prevalent, comorbid, and disabling disorder. The underlying mechanism of ethanol neurotoxicity and the involvement of oxidative stress is still not fully elucidated. However, ethanol metabolism has been associated with increased oxidative stress through alcohol dehydrogenase, the microsomal ethanol oxidation system, and catalase metabolic pathways. We searched the PubMed and genome-wide association studies (GWAS) catalog databases to review the literature systematically and summarized the findings focusing on AUD and alcohol abstinence in relation to oxidative stress. In addition, we reviewed the ClinicalTrials.gov resource of the US National Library of Medicine to identify all ongoing and completed clinical trials that include therapeutic interventions based on antioxidants. The retrieved clinical and preclinical studies show that oxidative stress impacts AUD through genetics, alcohol metabolism, inflammation, and neurodegeneration.
Collapse
|
6
|
Can gene therapy be used to prevent cancer? Gene therapy for aldehyde dehydrogenase 2 deficiency. Cancer Gene Ther 2022; 29:889-896. [PMID: 34799722 PMCID: PMC9117562 DOI: 10.1038/s41417-021-00399-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Approximately 8% of the world population and 35-45% of East Asians are carriers of the hereditary disorder aldehyde dehydrogenase 2 (ALDH2) deficiency. ALDH2 plays a central role in the liver to metabolize ethanol. With the common E487K variant, there is a deficiency of ALDH2 function; when ethanol is consumed, there is a systemic accumulation of acetaldehyde, an intermediate product in ethanol metabolism. In ALDH2-deficient individuals, ethanol consumption acutely causes the "Alcohol Flushing Syndrome" with facial flushing, tachycardia, nausea, and headaches. With chronic alcohol consumption, ALDH2 deficiency is associated with a variety of disorders, including a remarkably high risk for aerodigestive tract cancers. Acetaldehyde is a known carcinogen. The epidemiologic data relating to the association of ALDH2 deficiency and cancer risk are striking: ALDH2 homozygotes who are moderate-to-heavy consumers of ethanol have a 7-12-fold increased risk for esophageal cancer, making ALDH2 deficiency the most common hereditary disorder associated with an increased cancer risk. In this review, we summarize the genetics and biochemistry of ALDH2, the epidemiology of cancer risk associated with ALDH2 deficiency, the metabolic consequences of ethanol consumption associated with ALDH2 deficiency, and gene therapy strategies to correct ALDH2 deficiency and its associated cancer risk. With the goal of reducing the risk of aerodigestive tract cancers, in the context that ALDH2 is a hereditary disorder and ALDH2 functions primarily in the liver, ALDH2 deficiency is an ideal target for the application of adeno-associated virus-mediated liver-directed gene therapy to prevent cancer.
Collapse
|
7
|
Lin X, Zhu D, Wang K, Luo P, Rui G, Gao Y, Liu F, Yu H. Activation of aldehyde dehydrogenase 2 protects ethanol-induced osteonecrosis of the femoral head in rat model. Cell Prolif 2022; 55:e13252. [PMID: 35567426 PMCID: PMC9201375 DOI: 10.1111/cpr.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/24/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Osteonecrosis of the femoral head (ONFH) is a devastating disease characterized by destructive bone structures, enlarged adipocyte accumulation and impaired vascularization. The aldehyde dehydrogenase 2 (ALDH 2) is the limiting enzyme for ethanol metabolism with many physiological functions. The aim was investigated the potential protective role of activated ALDH 2 by Alda-1 for ethanol-induced ONFH. MATERIALS AND METHODS The ethanol-induced ONFH in rat was performed to explore the protective of Alda-1 by various experimental methods. Subsequently, the effect of Alda-1 and ethanol on the osteogenic and adipogenic differentiation was investigated via multiple cellular and molecular methods. Finally, the effect of Alda-1 and ethanol on the neo-vascularization was detected in Human umbilical vein endothelial cells (HUVECs) and ONFH model. RESULTS Firstly, radiographical and pathological measurements indicated that alda-1 protected ethanol-induced ONFH. Moreover, ethanol significantly inhibited the proliferation and osteogenic differentiation of BMSCs, whereas Alda-1 could distinctly rescue it by PI3K/AKT signalling. Secondly, ethanol remarkably promoted the lipid vacuoles formation of BMSCs, while Alda-1 significantly retarded it on BMSCs by AMPK signalling pathway. Finally, ethanol significantly inhibited proliferation and growth factor level resulting in reduced angiogenesis, whereas Alda-1 could rescue the effect of ethanol. Additionally, Alda-1 significantly reduced the occurrence of ONFH and promoted vessel number and distribution in alcoholic ONFH. CONCLUSIONS Alda-1 activation of ALDH 2 was highly demonstrated to protect ethanol-induced ONFH by triggering new bone formation, reducing adipogenesis and stimulating vascularization.
Collapse
Affiliation(s)
- Xiaoyi Lin
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenPeople's Republic of China
| | - Daoming Zhu
- Department of Medical ImagingThe Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiPeople's Republic of China
| | - Kaiyang Wang
- Department of Spine SurgeryDrum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Pengbo Luo
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Gang Rui
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenPeople's Republic of China
| | - Youshui Gao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Fuan Liu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenPeople's Republic of China
| | - Hongping Yu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenPeople's Republic of China
| |
Collapse
|
8
|
Salinas-Luypaert C, Sáez-Cortez F, Quintanilla ME, Herrera-Marschitz M, Rivera-Meza M. Gene knockdown of HCN2 ion channels in the ventral tegmental area reduces ethanol consumption in alcohol preferring rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:165-175. [PMID: 35377277 DOI: 10.1080/00952990.2022.2033759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Background: Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) ionic channels are known to play a key role in the control of neuron excitability and have been proposed as a molecular target of ethanol. Previous studies in rats have shown that gene-induced overexpression of the HCN2 channel in the ventral tegmental area (VTA) increases the rewarding effects of ethanol and its intake by the animals.Objective: The aim of this work was to study the effects of VTA HCN2 gene knockdown in the voluntary ethanol consumption of alcohol-preferring UChB rats.Methods: Two lentiviral vectors were generated; LV-siRNA-HCN2, coding for a siRNA that elicited >95% reduction of HCN2 protein levels in vitro, and a control vector coding for a scrambled siRNA sequence. Female UChB naïve rats (n = 14) were microinjected into the VTA with LV-siRNA-HCN2 or the scrambled control vector (n = 11). Four days after, animals were given a daily free access to 10% ethanol and water for 10 days.Results: Rats treated with the LV-siRNA-HCN2 vector showed a ~ 70% reduction (p < .001) in their ethanol preference and ethanol intake compared to control animals. No changes were observed in the total fluid intake of both groups. HCN2 levels in the VTA were measured by Western blot showing a reduction of 40% (p < .05) in the rats injected with LV-siRNA-HCN2, compared to control animals.Conclusion: These results show that knockdown of HCN2 ionic channels in the VTA of UChB rats markedly reduces their voluntary ethanol intake, supporting the idea that HCN2 channels may constitute a therapeutic target for alcohol use disorders.
Collapse
Affiliation(s)
- Catalina Salinas-Luypaert
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences Santiago, Chile
| | - Felipe Sáez-Cortez
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
9
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
10
|
Herr SA, Shi L, Gianaris T, Jiao Y, Sun S, Race N, Shapiro S, Shi R. Critical role of mitochondrial aldehyde dehydrogenase 2 in acrolein sequestering in rat spinal cord injury. Neural Regen Res 2021; 17:1505-1511. [PMID: 34916435 PMCID: PMC8771087 DOI: 10.4103/1673-5374.330613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial aldehyde dehydrogenase-2 (ALDH2), a key oxidoreductase and powerful endogenous anti-aldehyde machinery, is likely important for protecting neurons from aldehydes-mediated degeneration. Using a rat model of spinal cord contusion injury and recently discovered ALDH2 activator (Alda-1), we planned to validate the aldehyde-clearing and neuroprotective role of ALDH2. Over an acute 2 day period post injury, we found that ALDH2 expression was significantly lowered post-SCI, but not so in rats given Alda-1. This lower enzymatic expression may be linked to heightened acrolein-ALDH2 adduction, which was revealed in co-immunoprecipitation experiments. We have also found that administration of Alda-1 to SCI rats significantly lowered acrolein in the spinal cord, and reduced cyst pathology. In addition, Alda-1 treatment also resulted in significant improvement of motor function and attenuated post-SCI mechanical hypersensitivity up to 28 days post-SCI. Finally, ALDH2 was found to play a critical role in in vitro protection of PC12 cells from acrolein exposure. It is expected that the outcome of this study will broaden and enhance anti-aldehyde strategies in combating post-SCI neurodegeneration and potentially bring treatment to millions of SCI victims. All animal work was approved by Purdue Animal Care and Use Committee (approval No. 1111000095) on January 1, 2021.
Collapse
Affiliation(s)
- Seth A Herr
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Liangqin Shi
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Institute of Trauma and Orthopedics, Shanghai, China
| | - Thomas Gianaris
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yucheng Jiao
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Institute of Trauma and Orthopedics, Shanghai, China
| | - Siyuan Sun
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Nick Race
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Scott Shapiro
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Riyi Shi
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Khan M, Qiao F, Islam SMT, Dhammu TS, Kumar P, Won J, Singh AK, Singh I. GSNOR and ALDH2 alleviate traumatic spinal cord injury. Brain Res 2021; 1758:147335. [PMID: 33545099 DOI: 10.1016/j.brainres.2021.147335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Traumatic spinal cord injury (SCI) enhances the activity of S-nitrosoglutathione reductase (GSNOR) and inhibits the mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity, resulting in prolonged and sustained pain and functional deficits. This study's objective was to test the hypotheses that GSNOR's specific inhibitor N6022 mitigates pain and improves functional recovery in a mouse model of SCI. Furthermore, the degree of recovery is enhanced and the rate of recovery is accelerated by an ALDH2 activator Alda-1. Using both wild-type and GSNOR-/- mice, the SCI model deployed for groups was contusion at the T9-T10 vertebral level. The enzymatic activity of GSNOR and ALDH2 was measured, and the expression of GSNOR and ALDH2 was determined by western blot analysis. Functional improvements in experimental animals were assessed with locomotor, sensorimotor, and pain-like behavior tests. Wild-type SCI animals had enhanced GSNOR activity and decreased ALDH2 activity, leading to neurovascular dysfunction, edema, and worsened functional outcomes, including locomotor deficits and pain. Compared to wild-type SCI mice, GSNOR-/- mice had better functional outcomes. Monotherapy with either GSNOR inhibition by N6022 or enhanced ALDH2 activity by Alda-1 correlated well with functional recovery and lessened pain. However, combination therapy provided synergistic pain-relieving effects and more significant functional recovery compared with monotherapy. Conclusively, dysregulations in GSNOR and ALDH2 are among the causative mechanisms of SCI injury. Either inhibiting GSNOR or activating ALDH2 ameliorates SCI. Combining the specific inhibitor of GSNOR (N6022) with the selective activator of ALDH2 (Alda-1) provides greater protection to the neurovascular unit and confers greater functional recovery. The study is novel, and the combination therapy (N6022 + Alda-1) possesses translational potential.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H Johnson VA Medical Center, Charleston, SC, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Ralph H Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
12
|
Wilson DF, Matschinsky FM. Ethanol metabolism: The good, the bad, and the ugly. Med Hypotheses 2020; 140:109638. [PMID: 32113062 DOI: 10.1016/j.mehy.2020.109638] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
Throughout the world, ethanol is both an important commercial commodity and a source of major medical and social problems. Ethanol readily passes through biological membranes and distributes throughout the body. It is oxidized, first to acetaldehyde and then to acetate, and finally by the citric acid cycle in virtually all tissues. The oxidation of ethanol is irreversible and unregulated, making the rate dependent only on local concentration and enzyme activity. This unregulated input of reducing equivalents increases reduction of both cytoplasmic and intramitochondrial NAD and, through the latter, cellular energy state {[ATP]/([ADP][Pi])}. In brain, this increase in energy state stimulates dopaminergic neural activity signalling reward and a sense of well being, while suppressing glutamatergic neural activity signalling anxiety and unease. These positive responses to ethanol ingestion are important to social alcohol consumption. Importantly, decreased free [AMP] decreases AMP-dependent protein kinase (AMPK) activity, an important regulator of cellular energy metabolism. Oxidation of substrates used for energy metabolism in the absence of ethanol is down regulated to accommodate the input from ethanol. In liver, chronic ethanol metabolism results in fatty liver and general metabolic dysfunction. In brain, transport of other oxidizable metabolites through the blood-brain barrier and the enzymes for their oxidation are both down regulated. For exposures of short duration, ethanol induced regulatory changes are rapid and reversible, recovering completely when the concentrations of ethanol and acetate fall again. Longer periods of ethanol exposure and associated chronic suppression of AMPK activity activates regulatory mechanisms, including gene expression, that operate over longer time scales, both in onset and reversal. If chronic alcohol consumption is abruptly ended, metabolism is no longer able to respond rapidly enough to compensate. Glutamatergic neural activity adapts to chronic dysregulation of glutamate metabolism and suppression of glutamatergic neural activity by increasing excitatory and decreasing inhibitory amino acid receptors. A point is reached (ethanol dependence) where withdrawal of ethanol results in significant metabolic energy depletion in neurons and other brain cells as well as hyperexcitation of the glutamatergic system. The extent and regional specificity of energy depletion in the brain, combined with hyperactivity of the glutamatergic neuronal system, largely determines the severity of withdrawal symptoms.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
13
|
Kimura M, Yokoyama A, Higuchi S. Aldehyde dehydrogenase-2 as a therapeutic target. Expert Opin Ther Targets 2019; 23:955-966. [DOI: 10.1080/14728222.2019.1690454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mitsuru Kimura
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Kanagawa, Japan
| | - Akira Yokoyama
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Kanagawa, Japan
| | - Susumu Higuchi
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Kanagawa, Japan
| |
Collapse
|