1
|
Shen YC, Wu JC, Lin TT, Chang KC, Su JJ, Juang JMJ. Case Report: Lacosamide unmasking SCN5A-associated Brugada syndrome in a young female with epilepsy. Front Cardiovasc Med 2024; 11:1406614. [PMID: 38883985 PMCID: PMC11176425 DOI: 10.3389/fcvm.2024.1406614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Background Lacosamide is frequently used as a mono- or adjunctive therapy for the treatment of adults with epilepsy. Although lacosamide is known to act on both neuronal and cardiac sodium channels, potentially leading to cardiac arrhythmias, including Brugada syndrome (BrS), its adverse effects in individuals with genetic susceptibility are less understood. Case We report a 33-year-old female with underlying epilepsy who presented to the emergency department with a four-day history of seizure clusters, and was initially treated with lacosamide therapy. During the intravenous lacosamide infusion, the patient developed sudden cardiac arrest caused by ventricular arrhythmias necessitating resuscitation. Of note, the patient had a family history of sudden cardiac death. Workup including routine laboratory results, 12-lead electrocardiogram (ECG), echocardiogram, and coronary angiogram was non-specific. However, a characteristic type 1 Brugada ECG pattern was identified by ajmaline provocation testing; thus, confirming the diagnosis of BrS. Subsequently, the genotypic diagnosis was confirmed by Sanger sequencing, which revealed a heterozygous mutation (c.2893C>T, p.Arg965Cys) in the SCN5A gene. Eventually, the patient underwent implantable cardioverter-defibrillator implantation and was discharged with full neurological recovery. Conclusion This case highlights a rare but lethal adverse event associated with lacosamide treatment in patients with genetic susceptibility. Further research is warranted to investigate the interactions between lacosamide and SCN5A variants.
Collapse
Affiliation(s)
- Ying-Chi Shen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Chueh Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Tse Lin
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Chung Chang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jen-Jen Su
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center, Center of Heart Failure and Center of Genetic Heart Diseases, Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Chen JL, Kuo CC. Inhibition of resurgent Na + currents by rufinamide. Neuropharmacology 2024; 247:109835. [PMID: 38228283 DOI: 10.1016/j.neuropharm.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Na+ channels are essential for the genesis of action potentials in most neurons. After opening by membrane depolarization, Na+ channels enter a series of inactivated states (e.g. the fast, intermediate, and slow inactivated states; or If, Ii, and Is). The inactivated Na+ channel may recover via the open state upon membrane repolarization, giving rise to "resurgent" Na+ currents which could be critical for densely repetitive or burst discharges. We incubated CHO-K1 cells transfected with human NaV1.7 cDNA and measured resurgent currents with whole-cell patch recordings. We found Ii is the major inactivated state responsible for the genesis of resurgent currents. Rufinamide, in therapeutic concentrations, could selectively bind to Ii to slow the recovery process and dose-dependently inhibit resurgent currents. The other Na+ channel-inhibiting antiseizure medications (ASM), such as phenytoin and lacosamide (selectively binds to If and Is, separately), fail to show a similar inhibitory effect in clinically relevant concentrations. Resurgent currents are decreased with lengthening of the prepulse, presumably because of redistribution of the channel from Ii to If. Rufinamide could accentuate the decrease to mimic a use-dependent inhibitory effect. The molecular action of slowing of recovery from inactivation by binding to Ii also explains the highly correlative inhibitory effect of rufinamide on both transient and resurgent Na+ currents. The modest but correlative inhibition of both currents may make a novel synergistic effect and thus strong-enough suppression of pathological repetitive and especially burst discharges. Rufinamide may thus have a unique spectrum of therapeutic applications for disorders with excessive neural excitabilities.
Collapse
Affiliation(s)
- Jian-Lin Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Huang J, Fan X, Jin X, Jo S, Zhang HB, Fujita A, Bean BP, Yan N. Cannabidiol inhibits Na v channels through two distinct binding sites. Nat Commun 2023; 14:3613. [PMID: 37330538 PMCID: PMC10276812 DOI: 10.1038/s41467-023-39307-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychoactive phytocannabinoid in cannabis, is an effective treatment for some forms of epilepsy and pain. At high concentrations, CBD interacts with a huge variety of proteins, but which targets are most relevant for clinical actions is still unclear. Here we show that CBD interacts with Nav1.7 channels at sub-micromolar concentrations in a state-dependent manner. Electrophysiological experiments show that CBD binds to the inactivated state of Nav1.7 channels with a dissociation constant of about 50 nM. The cryo-EM structure of CBD bound to Nav1.7 channels reveals two distinct binding sites. One is in the IV-I fenestration near the upper pore. The other binding site is directly next to the inactivated "wedged" position of the Ile/Phe/Met (IFM) motif on the short linker between repeats III and IV, which mediates fast inactivation. Consistent with producing a direct stabilization of the inactivated state, mutating residues in this binding site greatly reduced state-dependent binding of CBD. The identification of this binding site may enable design of compounds with improved properties compared to CBD itself.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Hanxiong Bear Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Lin YC, Lai YC, Lin TH, Yang YC, Kuo CC. Selective stabilization of the intermediate inactivated Na+ channel by the new-generation anticonvulsant rufinamide. Biochem Pharmacol 2022; 197:114928. [DOI: 10.1016/j.bcp.2022.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
|
5
|
Ion-Channel Antiepileptic Drugs: An Analytical Perspective on the Therapeutic Drug Monitoring (TDM) of Ezogabine, Lacosamide, and Zonisamide. ANALYTICA 2021. [DOI: 10.3390/analytica2040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The term seizures includes a wide array of different disorders with variable etiology, which currently represent one of the most important classes of neurological illnesses. As a consequence, many different antiepileptic drugs (AEDs) are currently available, exploiting different activity mechanisms and providing different levels of performance in terms of selectivity, safety, and efficacy. AEDs are currently among the psychoactive drugs most frequently involved in therapeutic drug monitoring (TDM) practices. Thus, the plasma levels of AEDs and their metabolites are monitored and correlated to administered doses, therapeutic efficacy, side effects, and toxic effects. As for any analytical endeavour, the quality of plasma concentration data is only as good as the analytical method allows. In this review, the main techniques and methods are described, suitable for the TDM of three AEDs belonging to the class of ion channel agents: ezogabine (or retigabine), lacosamide, and zonisamide. In addition to this analytical overview, data are provided, pertaining to two of the most important use cases for the TDM of antiepileptics: drug–drug interactions and neuroprotection activity studies. This review contains 146 references.
Collapse
|
6
|
Cannabidiol Selectively Binds to the Voltage-Gated Sodium Channel Na v1.4 in Its Slow-Inactivated State and Inhibits Sodium Current. Biomedicines 2021; 9:biomedicines9091141. [PMID: 34572327 PMCID: PMC8465134 DOI: 10.3390/biomedicines9091141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Cannabidiol (CBD), one of the cannabinoids from the cannabis plant, can relieve the myotonia resulting from sodium channelopathy, which manifests as repetitive discharges of muscle membrane. We investigated the binding kinetics of CBD to Nav1.4 channels on the muscle membrane. The binding affinity of CBD to the channel was evaluated using whole-cell recording. The CDOCKER program was employed to model CBD docking onto the Nav1.4 channel to determine its binding sites. Our results revealed no differential inhibition of sodium current by CBD when the channels were in activation or fast inactivation status. However, differential inhibition was observed with a dose-dependent manner after a prolonged period of depolarization, leaving the channel in a slow-inactivated state. Moreover, CBD binds selectively to the slow-inactivated state with a significantly faster binding kinetics (>64,000 M−1 s−1) and a higher affinity (Kd of fast inactivation vs. slow-inactivation: >117.42 μM vs. 51.48 μM), compared to the fast inactivation state. Five proposed CBD binding sites in a bundle crossing region of the Nav1.4 channels pore was identified as Val793, Leu794, Phe797, and Cys759 in domain I/S6, and Ile1279 in domain II/S6. Our findings imply that CBD favorably binds to the Nav1.4 channel in its slow-inactivated state.
Collapse
|
7
|
Chou P, Kuo CC. Anticonvulsant vs. Proconvulsant Effect of in situ Deep Brain Stimulation at the Epileptogenic Focus. Front Syst Neurosci 2021; 15:607450. [PMID: 34408632 PMCID: PMC8366291 DOI: 10.3389/fnsys.2021.607450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Since deep brain stimulation (DBS) at the epileptogenic focus (in situ) denotes long-term repetitive stimulation of the potentially epileptogenic structures, such as the amygdala, the hippocampus, and the cerebral cortex, a kindling effect and aggravation of seizures may happen and complicate the clinical condition. It is, thus, highly desirable to work out a protocol with an evident quenching (anticonvulsant) effect but free of concomitant proconvulsant side effects. We found that in the basolateral amygdala (BLA), an extremely wide range of pulsatile stimulation protocols eventually leads to the kindling effect. Only protocols with a pulse frequency of ≤1 Hz or a direct current (DC), with all of the other parameters unchanged, could never kindle the animal. On the other hand, the aforementioned DC stimulation (DCS), even a pulse as short as 10 s given 5 min before the kindling stimuli or a pulse given even to the contralateral BLA, is very effective against epileptogenicity and ictogenicity. Behavioral, electrophysiological, and histological findings consistently demonstrate success in seizure quenching or suppression as well as in the safety of the specific DBS protocol (e.g., no apparent brain damage by repeated sessions of stimulation applied to the BLA for 1 month). We conclude that in situ DCS, with a novel and rational design of the stimulation protocol composed of a very low (∼3% or 10 s/5 min) duty cycle and assuredly devoid of the potential of kindling, may make a successful antiepileptic therapy with adequate safety in terms of little epileptogenic adverse events and tissue damage.
Collapse
Affiliation(s)
- Ping Chou
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Chin Kuo
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Lin YC, Lai YC, Chou P, Hsueh SW, Lin TH, Huang CS, Wang RW, Yang YC, Kuo CC. How Can an Na + Channel Inhibitor Ameliorate Seizures in Lennox-Gastaut Syndrome? Ann Neurol 2021; 89:1099-1113. [PMID: 33745195 DOI: 10.1002/ana.26068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is an epileptic encephalopathy frequently associated with multiple types of seizures. The classical Na+ channel inhibitors are in general ineffective against the seizures in LGS. Rufinamide is a new Na+ channel inhibitor, but approved for the treatment of LGS. This is not consistent with a choice of antiseizure drugs (ASDs) according to simplistic categorical grouping. METHODS The effect of rufinamide on the Na+ channel, cellular discharges, and seizure behaviors was quantitatively characterized in native neurons and mammalian models of epilepsy, and compared with the other Na+ channel inhibitors. RESULTS With a much faster binding rate to the inactivated Na+ channel than phenytoin, rufinamide is distinctively effective if the seizure discharges chiefly involve short bursts interspersed with hyperpolarized interburst intervals, exemplified by spike and wave discharges (SWDs) on electroencephalograms. Consistently, rufinamide, but not phenytoin, suppresses SWD-associated seizures in pentylenetetrazol or AY-9944 models, which recapitulate the major electrophysiological and behavioral manifestations in typical and atypical absence seizures, including LGS. INTERPRETATION Na+ channel inhibitors shall have sufficiently fast binding to exert an action during the short bursts and then suppress SWDs, in which cases rufinamide is superior. For the epileptiform discharges where the interburst intervals are not so hyperpolarized, phenytoin could be better because of the higher affinity. Na+ channel inhibitors with different binding kinetics and affinity to the inactivated channels may have different antiseizure scope. A rational choice of ASDs according to in-depth molecular pharmacology and the attributes of ictal discharges is advisable. ANN NEUROL 2021;89:1099-1113.
Collapse
Affiliation(s)
- Yun-Chu Lin
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Hsueh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tien-Hung Lin
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Syuan Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Wei Wang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|