1
|
PK L, Pawar RS, Katare YK, Sudheesh MS. Cannabinoids as Multitarget Drugs for the Treatment of Autoimmunity in Glaucoma. ACS Pharmacol Transl Sci 2025; 8:932-950. [PMID: 40242585 PMCID: PMC11997897 DOI: 10.1021/acsptsci.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Diseases of multifactorial origin like neurodegenerative and autoimmune diseases require a multitargeted approach. The discovery of the role of autoimmunity in glaucoma and retinal ganglionic cell (RGC) death has led to a paradigm shift in our understanding of the etiopathology of glaucoma. Glaucoma can cause irreversible vision loss that affects up to an estimated 3% of the population over 40 years of age. The current pharmacotherapy primarily aims to manage only intraocular pressure (IOP), a modifiable risk factor in the glaucomatous neurodegeneration of RGCs. However, neurodegeneration continues to happen in normotensive patients (where the IOP is below a reference value), and the silent nature of the disease can cause significant visual impairment and take a massive toll on the healthcare system. Cannabinoids, although known to reduce IOP since the 1970s, have received renewed interest due to their neuroprotective, anti-inflammatory, and immunosuppressive effects on autoimmunity. Additionally, the role of the gut-retina axis and abnormal Wnt signaling in glaucoma makes cannabinoids even more relevant because of their action on multiple targets, all converging in the pathogenesis of glaucomatous neurodegeneration. Cannabinoids also cause epigenetic changes in immune cells associated with autoimmunity. In this Review, we are proposing the use of cannabinoids as a multitargeted approach for treating autoimmunity associated with glaucomatous neurodegeneration, especially for the silent nature of glaucomatous neurodegeneration in normotensive patients.
Collapse
Affiliation(s)
- Lakshmi PK
- Dept.
of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| | | | - Yogesh Kumar Katare
- Truba
Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal 462038, India
| | - MS Sudheesh
- Dept.
of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| |
Collapse
|
2
|
Conti F, Lazzara F, Thermos K, Zingale E, Spyridakos D, Romano GL, Di Martino S, Micale V, Kuchar M, Spadaro A, Pignatello R, Rossi S, D'Amico M, Maria Platania CB, Drago F, Bucolo C. Retinal pharmacodynamic and pharmacokinetic profile of cannabidiol in an in vivo model of retinal excitotoxicity. Eur J Pharmacol 2025; 991:177323. [PMID: 39892452 DOI: 10.1016/j.ejphar.2025.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Cannabidiol (CBD) is one of the principal constituents of Cannabis Sativa with no psychoactive properties. CBD is a promising neuroprotective compound bearing anti-inflammatory and antioxidant properties. However, considering its low solubility, CBD delivery to the retina represents an unresolved issue. The first aim was to investigate the potential neuroprotective effects of CBD in an in vivo model of retinal excitotoxicity induced by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rats underwent intravitreal co-injection of AMPA (42 nmol) and CBD (10-4 M). The neuroprotective effect of CBD was investigated with histology and immunohistochemical evaluation of inflammatory and oxidative stress biomarkers. CBD reversed the AMPA-induced total retinal, inner nuclear layer and inner plexiform layer shrinkage and loss of amacrine cells. Moreover, CBD decreased the AMPA induced number of cleaved caspase-3, Iba-1 and nitrotyrosine (NT) positive cells. Based on this evidence, we developed a nanotechnological formulation of CBD to overcome critical issues related to its eye delivery. Particularly, nanostructured lipid carriers (NLC) loaded with CBD were prepared, optimized and characterized. Due to the optimal physicochemical characteristics, CBD-NLC3 has been selected and the in vitro release profile has been investigated. Additionally, CBD-NLC3 was topically administered to rats, and retinal CBD levels were determined. CBD-NLC3 formulation, after a single topical administration, efficiently delivered CBD in the retina (Cmax = 98 ± 25.9 ng/mg; Tmax = 60 min), showing a high translational value. In conclusion, these findings showed a good PD/PK profile of CBD warranting further pre-clinical and clinical evaluation of the new formulation for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Catania, Italy; NANOMED-Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, Italy
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Dept. Chemistry of Natural Compounds, University of Chemistry and Technologies, Prague, Czech Republic; Psychedelic Research Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Angelo Spadaro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Catania, Italy; NANOMED-Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
3
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 PMCID: PMC11936313 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Benjamin B. Land
- Department of Pharmacology, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| |
Collapse
|
4
|
Xiong X, Yang C, Jin Y, Zhang R, Wang S, Gan L, Hou S, Bao Y, Zeng Z, Ye Y, Gao Z. ABHD6 suppresses colorectal cancer progression via AKT signaling pathway. Mol Carcinog 2024; 63:647-662. [PMID: 38197491 DOI: 10.1002/mc.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Colorectal cancer (CRC) continues to be a prevalent malignancy, posing a significant risk to human health. The involvement of alpha/beta hydrolase domain 6 (ABHD6), a serine hydrolase family member, in CRC development was suggested by our analysis of clinical data. However, the role of ABHD6 in CRC remains unclear. This study seeks to elucidate the clinical relevance, biological function, and potential molecular mechanisms of ABHD6 in CRC. We investigated the role of ABHD6 in clinical settings, conducting proliferation, migration, and cell cycle assays. To determine the influence of ABHD6 expression levels on Oxaliplatin sensitivity, we also performed apoptosis assays. RNA sequencing and KEGG analysis were utilized to uncover the potential molecular mechanisms of ABHD6. Furthermore, we validated its expression levels using Western blot and reactive oxygen species (ROS) detection assays. Our results demonstrated that ABHD6 expression in CRC tissues was notably lower compared to adjacent normal tissues. This low expression correlated with a poorer prognosis for CRC patients. Moreover, ABHD6 overexpression impeded CRC cell proliferation and migration while inducing G0/G1 cell cycle arrest. In vivo experiments revealed that downregulation of ABHD6 resulted in an increase in tumor weight and volume. Mechanistically, ABHD6 overexpression inhibited the activation of the AKT signaling pathway and decreased ROS levels in CRC cells, suggesting the role of ABHD6 in CRC progression via the AKT signaling pathway. Our findings demonstrate that ABHD6 functions as a tumor suppressor, primarily by inhibiting the AKT signaling pathway. This role establishes ABHD6 as a promising prognostic biomarker and a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Xiaoyu Xiong
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Lin Gan
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Sen Hou
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yudi Bao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Malamas MS, Lamani M, Farah SI, Mohammad KA, Miyabe CY, Rajarshi G, Wu S, Zvonok N, Chandrashekhar H, Wood JT, Makriyannis A. Design and Synthesis of Highly Potent and Specific ABHD6 Inhibitors. ChemMedChem 2023; 18:e202100406. [PMID: 34486233 PMCID: PMC8898323 DOI: 10.1002/cmdc.202100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Indexed: 01/15/2023]
Abstract
Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.
Collapse
Affiliation(s)
- Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shrouq I. Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A. Mohammad
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Simiao Wu
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - JodiAnne T. Wood
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Papadogkonaki S, Spyridakos D, Lapokonstantaki E, Chaniotakis N, Makriyannis A, Malamas MS, Thermos K. Investigating the Effects of Exogenous and Endogenous 2-Arachidonoylglycerol on Retinal CB1 Cannabinoid Receptors and Reactive Microglia in Naive and Diseased Retina. Int J Mol Sci 2023; 24:15689. [PMID: 37958673 PMCID: PMC10650178 DOI: 10.3390/ijms242115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.
Collapse
Affiliation(s)
- Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | | | - Nikos Chaniotakis
- Department of Chemistry, University of Crete, Heraklion, 71003 Crete, Greece; (E.L.); (N.C.)
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| |
Collapse
|
7
|
Lindner T, Schmidl D, Peschorn L, Pai V, Popa-Cherecheanu A, Chua J, Schmetterer L, Garhöfer G. Therapeutic Potential of Cannabinoids in Glaucoma. Pharmaceuticals (Basel) 2023; 16:1149. [PMID: 37631064 PMCID: PMC10460067 DOI: 10.3390/ph16081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.
Collapse
Affiliation(s)
- Theresa Lindner
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Laura Peschorn
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Viktoria Pai
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, 1090 Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| |
Collapse
|
8
|
Ciaramellano F, Fanti F, Scipioni L, Maccarrone M, Oddi S. Endocannabinoid Metabolism and Transport as Drug Targets. Methods Mol Biol 2023; 2576:201-211. [PMID: 36152188 DOI: 10.1007/978-1-0716-2728-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The wide distribution of the endocannabinoid system (ECS) throughout the body and its pivotal pathophysiological role offer promising opportunities for the development of novel therapeutic drugs for treating several diseases. However, the need for strategies to circumvent the unwanted psychotropic and immunosuppressive effects associated with cannabinoid receptor agonism/antagonism has led to considerable research in the field of molecular alternatives, other than type-1 and type-2 (CB1/2) receptors, as therapeutic targets to indirectly manipulate this pro-homeostatic system. In this context, the use of selective inhibitors of proteins involved in endocannabinoid (eCB) transport and metabolism allows for an increase or decrease of the levels of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the sites where these major eCBs are indeed needed. This chapter will briefly review some preclinical and clinical evidence for the therapeutic potential of ECS pharmacological manipulation.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Federico Fanti
- Faculty of Bioscience and Technologies for Food, Environmental and Agriculture, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Spyridakos D, Mastrodimou N, Vemuri K, Ho TC, Nikas SP, Makriyannis A, Thermos K. Blockade of CB1 or Activation of CB2 Cannabinoid Receptors Is Differentially Efficacious in the Treatment of the Early Pathological Events in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2022; 24:240. [PMID: 36613692 PMCID: PMC9820336 DOI: 10.3390/ijms24010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress, neurodegeneration, neuroinflammation, and vascular leakage are believed to play a key role in the early stage of diabetic retinopathy (ESDR). The aim of this study was to investigate the blockade of cannabinoid receptor 1 (CB1R) and activation of cannabinoid receptor 2 (CB2R) as putative therapeutics for the treatment of the early toxic events in DR. Diabetic rats [streptozotocin (STZ)-induced] were treated topically (20 μL, 10 mg/mL), once daily for fourteen days (early stage DR model), with SR141716 (CB1R antagonist), AM1710 (CB2R agonist), and the dual treatment SR141716/AM1710. Immunohistochemical-histological, ELISA, and Evans-Blue analyses were performed to assess the neuroprotective and vasculoprotective properties of the pharmacological treatments on diabetes-induced retinal toxicity. Activation of CB2R or blockade of CB1R, as well as the dual treatment, attenuated the nitrative stress induced by diabetes. Both single treatments protected neural elements (e.g., RGC axons) and reduced vascular leakage. AM1710 alone reversed all toxic insults. These findings provide new knowledge regarding the differential efficacies of the cannabinoids, when administered topically, in the treatment of ESDR. Cannabinoid neuroprotection of the diabetic retina in ESDR may prove therapeutic in delaying the development of the advanced stage of the disease.
Collapse
Affiliation(s)
- Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Niki Mastrodimou
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Kiran Vemuri
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Thanh C. Ho
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Spyros P. Nikas
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
10
|
Wang X, Liu K, Wang Y, Huang Z, Wang X. Preparation of 2-Arachidonoylglycerol by Enzymatic Alcoholysis: Effects of Solvent and Water Activity on Acyl Migration. Foods 2022; 11:3213. [PMCID: PMC9601288 DOI: 10.3390/foods11203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzymatic alcoholysis was performed in an organic medium to synthesize 2-monoacylglycerol (2-MAG) rich in arachidonic acid. The results showed that solvent type and water activity (aw) significantly affected the 2-MAG yield. Under the optimum conditions, 33.58% 2-MAG was produced in the crude product in t-butanol system. Highly pure 2-MAG was obtained after two-stage extraction using 85% ethanol aqueous solution and hexane at first stage and dichloromethane and water at second stage. Isolated 2-MAG was used as substrate to investigate the effect of solvent type and aw on 2-MAG acyl migration in a lipase-inactivated system. The results indicated that non-polar solvents accelerated the acyl migration of 2-MAG, whereas isomerization was inhibited in polar solvent systems. The aw exhibited the strongest inhibition effect on 2-MAG isomerization at 0.97, but also affected the hydrolysis of glycerides and lipase selectivity.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Keying Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yifan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhuoneng Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaosan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85876799
| |
Collapse
|
11
|
CB 1R, CB 2R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review. Biomed Pharmacother 2022; 150:112981. [PMID: 35468582 DOI: 10.1016/j.biopha.2022.112981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is a complex biological regulatory system. Its expression and functionality have been widely investigated in ocular tissues. Recent data have reported its modulation to be valid in determining an ocular hypotensive and a neuroprotective effect in preclinical animal models of glaucoma. AIM This study aimed to explore the available literature on cannabinoid receptor 1 (CB1R), cannabinoid receptor 2 (CB2R), and transient receptor potential vanilloid 1 (TRPV1) expression in the trabecular meshwork (TM), ciliary body (CB), and retina as well as their ocular hypotensive and neuroprotective effects in preclinical, in vivo, animal glaucoma models. MATERIALS AND METHODS The study adhered to both PRISMA and SYRCLE guidelines. Sixty-nine full-length articles were included in the final analysis. RESULTS Preclinical studies indicated a widespread distribution of CB1R, CB2R, and TRPV1 in the TM, CB, and retina, although receptor-, age-, and species-dependent differences were observed. CB1R and CB2R modulation have been shown to exert ocular hypotensive effects in preclinical models via the regulation of inflow and outflow pathways. Retinal cell neuroprotection has been achieved in several experimental models, mediated by agonists and antagonists of CB1R, CB2R, and TRPV1. DISCUSSION Despite the growing body of preclinical data regarding the expression and modulation of ECS in ocular tissues, the mechanisms responsible for the hypotensive and neuroprotective efficacy exerted by this system remain largely elusive. Research on this topic is advocated to further substantiate the hypothesis that the ECS is a new potential therapeutic target in the context of glaucoma.
Collapse
|
12
|
Campbell WA, Blum S, Reske A, Hoang T, Blackshaw S, Fischer AJ. Cannabinoid signaling promotes the de-differentiation and proliferation of Müller glia-derived progenitor cells. Glia 2021; 69:2503-2521. [PMID: 34231253 DOI: 10.1002/glia.24056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Endocannabinoids (eCB) are lipid-based neurotransmitters that are known to influence synaptic function in the visual system. eCBs are also known to suppress neuroinflammation in different pathological states. However, nothing is known about the roles of the eCB system during the transition of Müller glia (MG) into proliferating progenitor-like cells in the retina. Accordingly, we used the chick and mouse model to characterize expression patterns of eCB-related genes and applied pharmacological agents to investigate how the eCB system impacts glial reactivity and the capacity of MG to become Müller glia-derived progenitor cells (MGPCs). We queried single cell RNA-seq libraries to identify eCB-related genes and identify cells with dynamic patterns of expression in damaged retinas. MG and inner retinal neurons expressed the eCB receptor CNR1, as well as enzymes involved in eCB metabolism. In the chick, intraocular injections of cannabinoids, 2-Arachidonoylglycerol (2-AG) and Anandamide (AEA), stimulated the formation of MGPCs. Cannabinoid Receptor 1 (CNR1)-agonists and Monoglyceride Lipase-inhibitor promoted the formation of MGPCs, whereas CNR1-antagonist and inhibitors of eCB synthesis suppressed this process. In damaged mouse retinas where MG activate NFkB-signaling, activation of CNR1 decreased and inhibition of CNR1 increased NFkB, whereas levels of neuronal cell death were unaffected. Surprisingly, retinal microglia were largely unaffected by increases or decreases in eCB-signaling in both chick and mouse retinas. We conclude that the eCB system in the retina influences the reactivity of MG and the formation of proliferating MGPCs, but does not influence the reactivity of immune cells in the retina.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alana Reske
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
14
|
WITHDRAWN: Design and synthesis of highly potent dual ABHD6/MGL inhibitors. Bioorg Med Chem 2021. [DOI: 10.1016/j.bmc.2021.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|