1
|
Farr CV, Xiao Y, El-Kasaby A, Schupp M, Hotka M, di Mauro G, Clarke A, Pastor Fernandez M, Sandtner W, Stockner T, Klade C, Maulide N, Freissmuth M. Probing the Chemical Space of Guanidino-Carboxylic Acids to Identify the First Blockers of the Creatine-Transporter-1. Mol Pharmacol 2024; 106:319-333. [PMID: 39322412 DOI: 10.1124/molpharm.124.000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The creatine transporter-1 (CRT-1/SLC6A8) maintains the uphill transport of creatine into cells against a steep concentration gradient. Cellular creatine accumulation is required to support the ATP-buffering by phosphocreatine. More than 60 compounds have been explored in the past for their ability to inhibit cellular creatine uptake, but the number of active compounds is very limited. Here, we show that all currently known inhibitors are full alternative substrates. We analyzed their structure-activity relationship for inhibition of CRT-1 to guide a rational approach to the synthesis of novel creatine transporter ligands. Measurements of both inhibition of [3H]creatine uptake and transport associated currents allowed for differentiating between full and partial substrates and true inhibitors. This combined approach led to a refined understanding of the structural requirements for binding to CRT-1, which translated into the identification of three novel compounds - i.e., compound 1 (2-(N-benzylcarbamimidamido)acetic acid), MIPA572 (=carbamimidoylphenylalanine), and MIPA573 (=carbamimidoyltryptophane) that blocked CRT-1 transport, albeit with low affinity. In addition, we found two new alternative full substrates, namely MIPA574 (carbamimidoylalanine) and GiDi1257 (1-carbamimidoylazetidine-3-carboxylic acid), which was superior in affinity to all known CTR-1 ligands, and one partial substrate, namely GiDi1254 (1-carbamimidoylpiperidine-4-carboxylic acid). SIGNIFICANCE STATEMENT: The creatine transporter-1 (CRT-1) is required to maintain intracellular creatine levels. Inhibition of CRT-1 has been recently proposed as a therapeutic strategy for cancer, but pharmacological tools are scarce. In fact, all available inhibitors are alternative substrates. We tested existing and newly synthesized guanidinocarboxylic acids for CRT-1 inhibition and identified three blockers, one partial and two full substrates of CRT-1. Our results support a refined structural understanding of ligand binding to CRT-1 and provide a proof-of-principle for blockage of CRT-1.
Collapse
Affiliation(s)
- Clemens V Farr
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Yi Xiao
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Manuel Schupp
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Matej Hotka
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Giovanni di Mauro
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Amy Clarke
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Miryam Pastor Fernandez
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Christoph Klade
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Nuno Maulide
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (C.V.F., A.E-K., M.H., A.C., W.S., T.S., M.F.); Institute of Organic Chemistry, University of Vienna, Vienna, Austria (Y.X., M.S., G.dM., M.P.F., N.M.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (Y.X., M.S., N.M.); AOP Orphan Pharmaceuticals GmbH, Vienna, Austria (C.K.); Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Vienna, Austria (N.M.); and NeGeMac Research Platform for Next Generation Macrocycles, Vienna, Austria (N.M.)
| |
Collapse
|
3
|
Angenoorth TJF, Maier J, Stankovic S, Bhat S, Sucic S, Freissmuth M, Sitte HH, Yang JW. Rescue of Misfolded Organic Cation Transporter 3 Variants. Cells 2022; 12:39. [PMID: 36611832 PMCID: PMC9818475 DOI: 10.3390/cells12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Organic cation transporters (OCTs) are membrane proteins that take up monoamines, cationic drugs and xenobiotics. We previously reported novel missense mutations of organic cation transporter 3 (OCT3, SLC22A3), some with drastically impacted transport capabilities compared to wildtype. For some variants, this was due to ER retention and subsequent degradation of the misfolded transporter. For other transporter families, it was previously shown that treatment of misfolded variants with pharmacological and chemical chaperones could restore transport function to a certain degree. To investigate two potentially ER-bound, misfolded variants (D340G and R348W), we employed confocal and biochemical analyses. In addition, radiotracer uptake assays were conducted to assess whether pre-treatment with chaperones could restore transporter function. We show that pre-treatment of cells with the chemical chaperone 4-PBA (4-phenyl butyric acid) leads to increased membrane expression of misfolded variants and is associated with increased transport capacity of D340G (8-fold) and R348W (1.5 times) compared to untreated variants. We herein present proof of principle that folding-deficient SLC22 transporter variants, in particular those of OCT3, are amenable to rescue by chaperones. These findings need to be extended to other SLC22 members with corroborated disease associations.
Collapse
Affiliation(s)
- Thomas J. F. Angenoorth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| | - Julian Maier
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| | - Stevan Stankovic
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| | - Shreyas Bhat
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
- Department of Physics, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Université de Montréal, 2960 Chemin de la Tour, Montréal, QC H3T 1J4, Canada
| | - Sonja Sucic
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090 Vienna, Austria
| |
Collapse
|