1
|
Omar EA, R R, Das PK, Pal R, Purawarga Matada GS, Maji L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur J Med Chem 2025; 281:117034. [PMID: 39527893 DOI: 10.1016/j.ejmech.2024.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
One of the major obstacles to sustained cancer treatment effectiveness is the development of medication resistance. Current therapies that block proteins associated with cancer progression often lose their efficacy due to acquired drug resistance, which is frequently driven by mutated or overexpressed protein targets. Proteolysis-targeting chimeras (PROTACs) offer an alternative therapeutic strategy by hijacking the cell's ubiquitin-proteasome system to degrade disease-causing proteins, presenting several potential advantages. Over the past few years, PROTACs have been developed to target various cancer-related proteins, offering new treatment options for patients with previously untreatable malignancies and serving as a foundation for next-generation therapeutics. One of the notable benefits of PROTACs is their ability to overcome certain resistance mechanisms that limit the effectiveness of conventional targeted therapies, as shown in several recent studies. Additionally, research teams are investigating how PROTACs can selectively degrade mutant proteins responsible for resistance to first-line cancer therapies. In the pursuit of novel and effective treatments, this review highlights recent advancements in the development of PROTACs aimed at overcoming cancer resistance. When it comes to drug design, heterocyclic scaffolds often serve as a foundational framework, offering opportunities for modification and optimization of novel molecules. Researchers are similarly exploring various heterocyclic derivatives as "warheads" in the design of PROTACs has been instrumental in pushing the boundaries of targeted protein degradation. As warheads, these heterocyclic compounds are responsible for recognizing and binding to the target protein, which ultimately leads to its degradation via the ubiquitin-proteasome system. This study aims to provide a comprehensive overview of cutting-edge strategies in PROTAC design, offering detailed insights into key concepts and methodologies for creating effective PROTACs. Special emphasis is placed on structure-based rational design, the development of novel warheads, and their critical in influencing biological activity.
Collapse
Affiliation(s)
- Ebna Azizal Omar
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rajesh R
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| |
Collapse
|
2
|
Hiskens MI. Glua1 Ubiquitination in Synaptic Plasticity and Cognitive Functions: Implications for Neurodegeneration. J Neurosci 2024; 44:e2018232024. [PMID: 38233219 PMCID: PMC10860488 DOI: 10.1523/jneurosci.2018-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Base Hospital, Mackay, Queensland 4740, Australia
| |
Collapse
|
3
|
George AJ, Wei W, Pyaram DN, Gomez M, Shree N, Kadirvelu J, Lail H, Wanders D, Murphy AZ, Mabb AM. Gordon Holmes Syndrome Model Mice Exhibit Alterations in Microglia, Age, and Sex-Specific Disruptions in Cognitive and Proprioceptive Function. eNeuro 2024; 11:ENEURO.0074-23.2023. [PMID: 38164552 PMCID: PMC10849025 DOI: 10.1523/eneuro.0074-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligase RNF216 are strongly linked to GHS. Previous studies show that deletion of Rnf216 in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic-pituitary-gonadal axis. To address RNF216 action in cognitive and motor functions, we tested Rnf216 knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion of Rnf216 alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS.
Collapse
Affiliation(s)
- Arlene J George
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Dhanya N Pyaram
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Morgan Gomez
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | | | - Hannah Lail
- Department of Nutrition, Georgia State University, Atlanta 30303, Georgia
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta 30303, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| |
Collapse
|
4
|
Kadirvelu J, Jacobs SE, Liu R, Charles AJ, Yin J, Mabb AM. The E3 ubiquitin ligase RNF216 contains a linear ubiquitin chain-determining-like domain that functions to regulate dendritic arborization and dendritic spine type in hippocampal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563080. [PMID: 37905043 PMCID: PMC10614953 DOI: 10.1101/2023.10.19.563080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Of the hundreds of E3 ligases found in the human genome, the RING-between RING (RBR) E3 ligase in the LUBAC (linear ubiquitin chain assembly complex) complex HOIP (HOIL-1-interacting protein or RNF31), contains a unique domain called LDD (linear ubiquitin chain determining domain). HOIP is the only E3 ligase known to form linear ubiquitin chains, which regulate inflammatory responses and cell death via activation of the NF-κB pathway. We identified an amino acid sequence within the RNF216 E3 ligase that shares homology to the LDD domain found in HOIP (R2-C). Here, we show that the R2-C domain of RNF216 promotes self-assembly of all ubiquitin chains, with a dominance for those assembled via K63-linkages. Deletion of the R2-C domain altered RNF216 localization, reduced dendritic complexity and changed the distribution of apical dendritic spine morphology types in primary hippocampal neurons. These changes were independent of the RNF216 RBR catalytic activity as expression of a catalytic inactive version of RNF216 had no effect. These data show that the R2-C domain of RNF216 diverges in ubiquitin assembly function from the LDD of HOIP and and functions independently of RNF216 catalytic activity to regulate dendrite development in neurons.
Collapse
Affiliation(s)
- Jayashree Kadirvelu
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, 30303, United States
| | - Savannah E. Jacobs
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| | - Ruochuan Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| | - Antoinette J. Charles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, 30303, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| | - Angela M. Mabb
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
5
|
Guntupalli S, Park P, Han DH, Zhang L, Yong XLH, Ringuet M, Blackmore DG, Jhaveri DJ, Koentgen F, Widagdo J, Kaang BK, Anggono V. Ubiquitination of the GluA1 Subunit of AMPA Receptors Is Required for Synaptic Plasticity, Memory, and Cognitive Flexibility. J Neurosci 2023; 43:5448-5457. [PMID: 37419688 PMCID: PMC10376930 DOI: 10.1523/jneurosci.1542-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-β cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-β-induced synaptic depression in Alzheimer's disease.
Collapse
Affiliation(s)
- Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pojeong Park
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dae Hee Han
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mitchell Ringuet
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frank Koentgen
- Ozgene Pty Ltd, Bentley DC, Western Australia 6983, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Gu J, Ke P, Guo H, Liu J, Liu Y, Tian X, Huang Z, Xu X, Xu D, Ma Y, Wang X, Xiao F. KCTD13-mediated ubiquitination and degradation of GluN1 regulates excitatory synaptic transmission and seizure susceptibility. Cell Death Differ 2023; 30:1726-1741. [PMID: 37142655 PMCID: PMC10307852 DOI: 10.1038/s41418-023-01174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common and severe form of epilepsy in adults; however, its underlying pathomechanisms remain elusive. Dysregulation of ubiquitination is increasingly recognized to contribute to the development and maintenance of epilepsy. Herein, we observed for the first time that potassium channel tetramerization domain containing 13 (KCTD13) protein, a substrate-specific adapter for cullin3-based E3 ubiquitin ligase, was markedly down-regulated in the brain tissue of patients with TLE. In a TLE mouse model, the protein expression of KCTD13 dynamically changed during epileptogenesis. Knockdown of KCTD13 in the mouse hippocampus significantly enhanced seizure susceptibility and severity, whereas overexpression of KCTD13 showed the opposite effect. Mechanistically, GluN1, an obligatory subunit of N-methyl-D-aspartic acid receptors (NMDARs), was identified as a potential substrate protein of KCTD13. Further investigation revealed that KCTD13 facilitates lysine-48-linked polyubiquitination of GluN1 and its degradation through the ubiquitin-proteasome pathway. Besides, the lysine residue 860 of GluN1 is the main ubiquitin site. Importantly, dysregulation of KCTD13 affected membrane expression of glutamate receptors and impaired glutamate synaptic transmission. Systemic administration of the NMDAR inhibitor memantine significantly rescued the epileptic phenotype aggravated by KCTD13 knockdown. In conclusion, our results demonstrated an unrecognized pathway of KCTD13-GluN1 in epilepsy, suggesting KCTD13 as a potential neuroprotective therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Demei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Lim D, Tapella L, Dematteis G, Talmon M, Genazzani AA. Calcineurin Signalling in Astrocytes: From Pathology to Physiology and Control of Neuronal Functions. Neurochem Res 2023; 48:1077-1090. [PMID: 36083398 PMCID: PMC10030417 DOI: 10.1007/s11064-022-03744-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Calcineurin (CaN), a Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a Ca2+-sensitive switch regulating cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated with neuroinflammation in diseases such as Alzheimer's disease, epilepsy and brain trauma. Recent reports suggest that, in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance of basal protein synthesis rate and activation of astrocytic Na+/K+ pump thereby contributing to neuronal functions such as neuronal excitability and memory formation. In this contribution we overview the role of Ca2+ and CaN signalling in astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale "Amedeo Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
8
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular Logic of Synaptic Diversity Between Drosophila Tonic and Phasic Motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524447. [PMID: 36711745 PMCID: PMC9882338 DOI: 10.1101/2023.01.17.524447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features is poorly understood. To identify molecular pathways that contribute to synaptic diversity, single neuron PatchSeq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated synaptic active zones in phasic motoneurons are more compact and display enhanced Ca 2+ influx compared to their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications and intracellular Ca 2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
9
|
Antioxidants Prevent the Effects of Physical Exercise on Visual Cortical Plasticity. Cells 2022; 12:cells12010048. [PMID: 36611842 PMCID: PMC9818657 DOI: 10.3390/cells12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Physical activity has been recently shown to enhance adult visual cortical plasticity, both in human subjects and animal models. While physical activity activates mitochondrial oxidative metabolism leading to a transient production of reactive oxygen species, it remains unknown whether this process is involved in the plasticizing effects elicited at the visual cortical level. RESULTS Here, we investigated whether counteracting oxidative stress through a dietary intervention with antioxidants (vitamins E and C) interferes with the impact of physical exercise on visual cortex plasticity in adult rats. Antioxidant supplementation beyond the closure of the critical period blocked ocular dominance plasticity in response to eye deprivation induced by physical activity in adult rats. CONCLUSIONS Antioxidants exerted their action through a mithormetic effect that involved dampening of oxidative stress and insulin-like growth factor 1 (IGF-1) signaling in the brain.
Collapse
|
10
|
Pérez-Villegas EM, Ruiz R, Bachiller S, Ventura F, Armengol JA, Rosa JL. The HERC proteins and the nervous system. Semin Cell Dev Biol 2022; 132:5-15. [PMID: 34848147 DOI: 10.1016/j.semcdb.2021.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla, Virgen del Rocío University Hospital, CSIC, University of Sevilla, Sevilla, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
11
|
Ma P, Wan LP, Li Y, He CH, Song NN, Zhao S, Wang H, Ding YQ, Mao B, Sheng N. RNF220 is an E3 ubiquitin ligase for AMPA receptors to regulate synaptic transmission. SCIENCE ADVANCES 2022; 8:eabq4736. [PMID: 36179027 PMCID: PMC9524831 DOI: 10.1126/sciadv.abq4736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/15/2022] [Indexed: 06/12/2023]
Abstract
The accurate expression of postsynaptic AMPA receptors (AMPARs) is critical for information processing in the brain, and ubiquitination is a key regulator for this biological process. However, the roles of E3 ubiquitin ligases in the regulation of AMPARs are poorly understood. Here, we find that RNF220 directly interacts with AMPARs to meditate their polyubiquitination, and RNF220 knockout specifically increases AMPAR protein levels, thereby enhancing basal synaptic activity while impairing synaptic plasticity. Moreover, depending on its E3 ubiquitin ligase activity, RNF220 represses AMPAR-mediated excitatory synaptic responses and their neuronal surface expression. Furthermore, learning and memory are altered in forebrain RNF220-deficient mice. In addition, two neuropathology-related RNF220 variants fail to repress excitatory synaptic activity because of the incapability to regulate AMPAR ubiquitination due to their attenuated interaction. Together, we identify RNF220 as an E3 ubiquitin ligase for AMPARs and establish its substantial role in excitatory synaptic transmission and brain function.
Collapse
Affiliation(s)
- Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Pear Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Shiping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
12
|
Sun M, Zhang X. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell Biosci 2022; 12:126. [PMID: 35962460 PMCID: PMC9373315 DOI: 10.1186/s13578-022-00870-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination is a versatile post-translational modification (PTM), which regulates diverse fundamental features of protein substrates, including stability, activity, and localization. Unsurprisingly, dysregulation of the complex interaction between ubiquitination and deubiquitination leads to many pathologies, such as cancer and neurodegenerative diseases. The versatility of ubiquitination is a result of the complexity of ubiquitin (Ub) conjugates, ranging from a single Ub monomer to Ub polymers with different length and linkage types. To further understand the molecular mechanism of ubiquitination signaling, innovative strategies are needed to characterize the ubiquitination sites, the linkage type, and the length of Ub chain. With advances in chemical biology tools, computational methodologies, and mass spectrometry, protein ubiquitination sites and their Ub chain architecture have been extensively revealed. The obtained information on protein ubiquitination helps to crack the molecular mechanism of ubiquitination in numerous pathologies. In this review, we summarize the recent advances in protein ubiquitination analysis to gain updated knowledge in this field. In addition, the current and future challenges and barriers are also reviewed and discussed.
Collapse
|
13
|
Frenguelli BG. The glutamatergic synapse - A key hub in neuronal metabolism, signalling and plasticity. Neuropharmacology 2022; 207:108945. [PMID: 34999011 DOI: 10.1016/j.neuropharm.2022.108945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Special Issue of Neuropharmacology on the glutamatergic synapse is one of a series of Special Issues celebrating the 40th anniversary of Dick Evans and Jeff Watkins's seminal review on excitatory amino acids (Watkins and Evans, 1981). Through a careful appraisal of the literature extending several decades prior to the 1980s, and their own development and use of ligands for excitatory amino acid receptors, Dick and Jeff provided incontrovertible proof for the veracity and importance of glutamate as a neurotransmitter in the central nervous system. While other Special Issues in this series examine the receptors activated by glutamate (AMPA, NMDA, Kainate, mGluR and Delta/Orphan glutamate receptors) this Special Issue examines the glutamatergic synapse itself, and considers its evolution, metabolism, structure, properties and plasticity that have placed it so firmly at the centre of neuronal signalling in the central nervous system.
Collapse
|