1
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Pätsi H, Kilpeläinen TP, Jumppanen M, Uhari-Väänänen J, Wielendaele PV, De Lorenzo F, Cui H, Auno S, Saharinen J, Seppälä E, Sipari N, Savinainen J, De Meester I, Lambeir AM, Lahtela-Kakkonen M, Myöhänen TT, Wallén EAA. 5-Aminothiazoles Reveal a New Ligand-Binding Site on Prolyl Oligopeptidase Which is Important for Modulation of Its Protein-Protein Interaction-Derived Functions. J Med Chem 2024; 67:5421-5436. [PMID: 38546708 PMCID: PMC11394002 DOI: 10.1021/acs.jmedchem.3c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole scaffold allowed exploration of wider substitution patterns than that was possible with the 5-aminooxazole scaffold. The intriguing structure-activity relationships for the modulation of the proteolytic activity and PPI-derived functions of PREP were elaborated by presenting a new binding site for PPI modulating PREP ligands, which was initially discovered using molecular modeling and later confirmed through point mutation studies. Our results suggest that this new binding site on PREP is clearly more important than the active site of PREP for the modulation of its PPI-mediated functions.
Collapse
Affiliation(s)
- Henri
T. Pätsi
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi P. Kilpeläinen
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Mikael Jumppanen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Johanna Uhari-Väänänen
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Pieter Van Wielendaele
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Francesca De Lorenzo
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Hengjing Cui
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Samuli Auno
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Janne Saharinen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Erin Seppälä
- School
of Medicine/Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio 70211, Finland
| | - Nina Sipari
- Viikki
Metabolomics
Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Juha Savinainen
- School
of Medicine/Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio 70211, Finland
| | - Ingrid De Meester
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maija Lahtela-Kakkonen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Timo T. Myöhänen
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
- Division
of Pharmacology, Faculty of Medicine, University
of Helsinki, P.O.Box 63, 00014 Helsinki, Finland
| | - Erik A. A. Wallén
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Nuber S, Zhang X, McCaffery TD, Moors TE, Adom MA, Hahn WN, Martin D, Ericsson M, Tripathi A, Dettmer U, Svenningsson P, Selkoe DJ. Generation of G51D and 3D mice reveals decreased α-synuclein tetramer-monomer ratios promote Parkinson's disease phenotypes. NPJ Parkinsons Dis 2024; 10:47. [PMID: 38424059 PMCID: PMC10904737 DOI: 10.1038/s41531-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in the α-Synuclein (αS) gene promote αS monomer aggregation that causes neurodegeneration in familial Parkinson's disease (fPD). However, most mouse models expressing single-mutant αS transgenes develop neuronal aggregates very slowly, and few have dopaminergic cell loss, both key characteristics of PD. To accelerate neurotoxic aggregation, we previously generated fPD αS E46K mutant mice with rationally designed triple mutations based on the α-helical repeat motif structure of αS (fPD E46K→3 K). The 3 K variant increased αS membrane association and decreased the physiological tetramer:monomer ratio, causing lipid- and vesicle-rich inclusions and robust tremor-predominant, L-DOPA responsive PD-like phenotypes. Here, we applied an analogous approach to the G51D fPD mutation and its rational amplification (G51D → 3D) to generate mutant mice. In contrast to 3 K mice, G51D and 3D mice accumulate monomers almost exclusively in the cytosol while also showing decreased αS tetramer:monomer ratios. Both 1D and 3D mutant mice gradually accumulate insoluble, higher-molecular weight αS oligomers. Round αS neuronal deposits at 12 mos immunolabel for ubiquitin and pSer129 αS, with limited proteinase K resistance. Both 1D and 3D mice undergo loss of striatal TH+ fibers and midbrain dopaminergic neurons by 12 mos and a bradykinesia responsive to L-DOPA. The 3D αS mice have decreased tetramer:monomer equilibria and recapitulate major features of PD. These fPD G51D and 3D mutant mice should be useful models to study neuronal αS-toxicity associated with bradykinetic motor phenotypes.
Collapse
Affiliation(s)
- Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaoqun Zhang
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Thomas D McCaffery
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim E Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marie-Alexandre Adom
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wolf N Hahn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Martin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Skylar-Scott IA, Sha SJ. Lewy Body Dementia: An Overview of Promising Therapeutics. Curr Neurol Neurosci Rep 2023; 23:581-592. [PMID: 37572228 DOI: 10.1007/s11910-023-01292-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE OF REVIEW Lewy body dementia (LBD) encompasses dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). This article will emphasize potential disease-modifying therapies as well as investigative symptomatic treatments for non-motor symptoms including cognitive impairment and psychosis that can present a tremendous burden to patients with LBD and their caregivers. RECENT FINDINGS We review 11 prospective disease-modifying therapies (DMT) including four with phase 2 data (neflamapimod, nilotinib, bosutinib, and E2027); four with some limited data in symptomatic populations including phase 1, open-label, registry, or cohort data (vodabatinib, ambroxol, clenbuterol, and terazosin); and three with phase 1 data in healthy populations (Anle138b, fosgonimeton, and CT1812). We also appraise four symptomatic therapies for cognitive impairment, but due to safety and efficacy concerns, only NYX-458 remains under active investigation. Of symptomatic therapies for psychosis recently investigated, pimavanserin shows promise in LBD, but studies of nelotanserin have been suspended. Although the discovery of novel symptomatic and disease-modifying therapeutics remains a significant challenge, recently published and upcoming trials signify promising strides toward that aim.
Collapse
Affiliation(s)
- Irina A Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, 94305, USA.
| | - Sharon J Sha
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, 94305, USA
| |
Collapse
|
6
|
Rodger AT, ALNasser M, Carter WG. Are Therapies That Target α-Synuclein Effective at Halting Parkinson's Disease Progression? A Systematic Review. Int J Mol Sci 2023; 24:11022. [PMID: 37446200 PMCID: PMC10341763 DOI: 10.3390/ijms241311022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
There are currently no pharmacological treatments available that completely halt or reverse the progression of Parkinson's Disease (PD). Hence, there is an unmet need for neuroprotective therapies. Lewy bodies are a neuropathological hallmark of PD and contain aggregated α-synuclein (α-syn) which is thought to be neurotoxic and therefore a suitable target for therapeutic interventions. To investigate this further, a systematic review was undertaken to evaluate whether anti-α-syn therapies are effective at preventing PD progression in preclinical in vivo models of PD and via current human clinical trials. An electronic literature search was performed using MEDLINE and EMBASE (Ovid), PubMed, the Web of Science Core Collection, and Cochrane databases to collate clinical evidence that investigated the targeting of α-syn. Novel preclinical anti-α-syn therapeutics provided a significant reduction of α-syn aggregations. Biochemical and immunohistochemical analysis of rodent brain tissue demonstrated that treatments reduced α-syn-associated pathology and rescued dopaminergic neuronal loss. Some of the clinical studies did not provide endpoints since they had not yet been completed or were terminated before completion. Completed clinical trials displayed significant tolerability and efficacy at reducing α-syn in patients with PD with minimal adverse effects. Collectively, this review highlights the capacity of anti-α-syn therapies to reduce the accumulation of α-syn in both preclinical and clinical trials. Hence, there is potential and optimism to target α-syn with further clinical trials to restrict dopaminergic neuronal loss and PD progression and/or provide prophylactic protection to avoid the onset of α-syn-induced PD.
Collapse
Affiliation(s)
- Abbie T. Rodger
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.T.R.); (M.A.)
| | - Maryam ALNasser
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.T.R.); (M.A.)
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (A.T.R.); (M.A.)
| |
Collapse
|
7
|
Synucleins: New Data on Misfolding, Aggregation and Role in Diseases. Biomedicines 2022; 10:biomedicines10123241. [PMID: 36551997 PMCID: PMC9775291 DOI: 10.3390/biomedicines10123241] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The synucleins are a family of natively unfolded (or intrinsically unstructured) proteins consisting of α-, β-, and γ-synuclein involved in neurodegenerative diseases and cancer. The current number of publications on synucleins has exceeded 16.000. They remain the subject of constant interest for over 35 years. Two reasons explain this unchanging attention: synuclein's association with several severe human diseases and the lack of understanding of the functional roles under normal physiological conditions. We analyzed recent publications to look at the main trends and developments in synuclein research and discuss possible future directions. Traditional areas of peak research interest which still remain high among last year's publications are comparative studies of structural features as well as functional research on of three members of the synuclein family. Another popular research topic in the area is a mechanism of α-synuclein accumulation, aggregation, and fibrillation. Exciting fast-growing area of recent research is α-synuclein and epigenetics. We do not present here a broad and comprehensive review of all directions of studies but summarize only the most significant recent findings relevant to these topics and outline potential future directions.
Collapse
|