1
|
Ecco JC, Soares AA, da Silva KET, Ansolin V, Sousa Silva GV, Resende E Silva DT. Inflammatory pain and electroacupuncture: how the P2X3 receptor can help modulate inflammation-a review of current literature. Inflamm Res 2025; 74:58. [PMID: 40153028 DOI: 10.1007/s00011-025-02023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/30/2025] Open
Abstract
AIM Inflammatory pain arises from tissue stress or injury and is initiated by signaling molecules that stimulate the immune and nervous systems. Evidence suggests that purinergic signaling pathways can modulate pain and inflammation through the activation of P1 and P2 purinergic receptors, such as the P2X3 receptor, which are stimulated by extracellular molecules like adenosine triphosphate (ATP). Electroacupuncture (EA) exhibits precise mechanisms that modulate inflammatory pain through the activation of the P2X3 receptor. OBJECTIVE This review analyzed evidence regarding the role of electroacupuncture and the purinergic system, particularly the P2X3 receptor, in modulating inflammation and pain. MATERIALS AND METHODS A search for the most relevant articles available in the SciVerse Scopus and MEDLINE/PubMed databases was conducted for publications from 1995 to 2024. Articles were initially selected by reading the title, abstract, and main text, respectively. RESULTS It was found that the P2X3 receptor, as well as the molecules activating purinergic receptors, such as ATP and adenosine, have the potential to regulate pain and inflammation. Additionally, EA can modulate the purinergic system in an anti-inflammatory response. EA may stimulate analgesia mainly through the conversion of ATP to adenosine, a crucial molecule in pain control. CONCLUSION The purinergic system directly influences inflammatory pain and controls inflammation. In this context, EA has the potential to orchestrate this system to control pain and inflammation.
Collapse
Affiliation(s)
- Jardel Cristiano Ecco
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, Santa Catarina, CEP 89815-899, Brazil
| | - Adinei Abadio Soares
- Department of Medicine, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Keroli Eloiza Tessaro da Silva
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, Santa Catarina, CEP 89815-899, Brazil
| | - Vinicius Ansolin
- Department of Nursing, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | | | - Débora Tavares Resende E Silva
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, Santa Catarina, CEP 89815-899, Brazil.
- Department of Medicine, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
- Department of Nursing, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Kerosi DO, Yin Y, Gu P, Liu D, Deng M, Li JD. Overactive PKA signaling underlies the hyperalgesia in an ADHD mouse model. iScience 2024; 27:111110. [PMID: 39507260 PMCID: PMC11539593 DOI: 10.1016/j.isci.2024.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
There is an intimate relationship between pain hypersensitivity and attention deficit hyperactivity disorder (ADHD); however, the underlying mechanisms are still elusive. Individuals carrying the mutation in CRY1 (c. 1657 + 3A > C), which leads to deletion of exon 11 expression in the CRY1 protein (CRY1Δ11), exhibit ADHD symptoms. Here, we demonstrate that the responses to thermal and mechanical stimuli were amplified in the Cry1Δ11 mice. RNA-sequencing analysis identified protein kinase A (PKA) signaling as being overactive in the spinal cords of Cry1Δ11 mice. The neuronal excitability was significantly enhanced in the spinal cords of Cry1Δ11 mice as determined by in vitro electrophysiology. The PKA inhibitor H89 normalized hyperalgesia in Cry1Δ11 mice, underscoring the causative effect of overactive PKA signaling. Our results thus point to the PKA signaling pathway as the underlying mechanism and a potential therapeutic target for pain hypersensitivity in a validated ADHD mouse model.
Collapse
Affiliation(s)
- Danvas Ongwacho Kerosi
- Furong Laboratory, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Changsha, China
| | - Yuan Yin
- Furong Laboratory, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
| | - Panyang Gu
- Furong Laboratory, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
| | - Dengfeng Liu
- Furong Laboratory, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Changsha, China
| | - Meichun Deng
- Furong Laboratory, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Changsha, China
| |
Collapse
|
3
|
Hao JW, Liu TT, Qiu CY, Li XM, Qiao WL, Li Q, Qin QR, Hu WP. Lipid mediator resolvin D2 inhibits ATP currents in rat primary sensory neurons. J Neurochem 2024; 168:3715-3726. [PMID: 37987505 DOI: 10.1111/jnc.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Resolvin D2 (RvD2), an endogenous lipid mediator derived from docosahexaenoic acid, has been demonstrated to have analgesic effects. However, little is known about the mechanism underlying RvD2 in pain relief. Herein, we demonstrate that RvD2 targeted the P2X3 receptor as an analgesic. The electrophysiological activity of P2X3 receptors was suppressed by RvD2 in rat dorsal root ganglia (DRG) neurons. RvD2 pre-application dose-dependently decreased α,β-methylene-ATP (α,β-meATP)-induced inward currents. RvD2 remarkably decreased the maximum response to α,β-meATP, without influencing the affinity of P2X3 receptors. RvD2 also voltage-independently suppressed ATP currents. An antagonist of the G protein receptor 18 (GPR18), O-1918, prevented the RvD2-induced suppression of ATP currents. Additionally, intracellular dialysis of the Gαi/o-protein antagonist pertussis toxin (PTX), the PKA antagonist H89, or the cAMP analog 8-Br-cAMP also blocked the RvD2-induced suppression. Furthermore, α,β-meATP-triggered depolarization of membrane potential along with the action potential bursts in DRG neurons were inhibited by RvD2. Lastly, RvD2 attenuated spontaneous nociceptive behaviors as well as mechanical allodynia produced by α,β-meATP in rats via the activation of the peripheral GPR18. These findings indicated that RvD2 inhibited P2X3 receptors in rat primary sensory neurons through GPR18, PTX-sensitive Gαi/o-proteins, and intracellular cAMP/PKA signaling, revealing a novel mechanism that underlies its analgesic effects by targeting P2X3 receptors.
Collapse
Affiliation(s)
- Jia-Wei Hao
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Wen-Long Qiao
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Qing Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, PR China
- Department of Physiology, Hubei College of Chinese Medicine, Jingzhou, Hubei, PR China
| |
Collapse
|
4
|
Wang WT, Feng F, Zhang MM, Tian X, Yang QQ, Li YJ, Tao XX, Xu YL, Dou E, Wang JY, Zeng XY. Red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. Neurochem Int 2024; 179:105840. [PMID: 39181245 DOI: 10.1016/j.neuint.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist β-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than β-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1β in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1β, these effects were reversed by EGLU instead of β-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1β in normal rats, while intrarubral injection of EGLU rather than β-NAAG significantly boosted the expressions of TNF-α and IL-1β. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yue-Jia Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao-Xia Tao
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - E Dou
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Illes P, Di Virgilio F, Tang Y. Editorial - Purinergic signalling: 50 years. Neuropharmacology 2024; 245:109826. [PMID: 38135034 DOI: 10.1016/j.neuropharm.2023.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The function of almost all cells of the human and animal body is synchronized by purinergic/pyrimidinergic extracellular signalling molecules. This network activity is especially efficient in the central and peripheral nervous systems, driven by secretion of the (co)transmitter ATP (including its enzymatic degradation products ADP, AMP, and adenosine), as well as ATP/UTP (including UDP) released from the cytoplasm by either Ca2+-dependent vesicular exocytosis or by non-exocytotic pathways via a family of diverse channels. It must be pointed out that neural cells (neurons, astrocytes, and oligodendrocytes) are equal sources of nucleotides/nucleosides, as non-neural cells (e.g. the endothelium of small blood vessels). A whole plethora of purinergic receptors responding to the endogenously released purine and pyrimidine nucleotides as well as to adenosine, are instrumental in providing the structural basis for cell stimulation. The present collection of papers summarizes current knowledge and recent findings in the medicinal chemistry, electrophysiology, neuropharmacology and neurobiology of purinergic transmission. Accruing evidence supports the key role of extracellular nucleotides and nucleosides in neuroinflammation, neurodegeneration, and in neuropsychiatric diseases, thus paving the way for pharmacological intervention thanks to the development of novel brain-permeant, drug-like, purinergic ligands. We are confident that these therapies will open a new avenue for the treatment of so far uncurable diseases of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Peter Illes
- International Joint Research Centre on Purinergic Signalling, Chengdu, China; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, Chengdu, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|