1
|
Guenther KG, Wirt JL, Oliva I, Saberi SA, Crystal JD, Hohmann AG. The cannabinoid CB 2 agonist LY2828360 suppresses neuropathic pain behavior and attenuates morphine tolerance and conditioned place preference in rats. Neuropharmacology 2025; 265:110257. [PMID: 39644993 PMCID: PMC11729772 DOI: 10.1016/j.neuropharm.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cannabinoid CB2 agonists show promise as analgesics because they lack unwanted side effects associated with direct activation of CB1 receptors. CB2 receptor activation suppresses pathological pain in animal models, but the types of pain that best respond to CB2 agonists are incompletely understood. This gap in knowledge may contribute to failures in clinical translation. We previously showed that the G protein-biased CB2 receptor agonist LY2828360 attenuated the maintenance of neuropathic pain behavior in mouse models of inflammatory and neuropathic pain. Whether this finding generalizes to neuropathic pain induced by traumatic nerve injury or occurs in multiple rodent species remains unknown. Here we show that LY2828360 (3 and 10 mg/kg i.p.), administered acutely, reversed paclitaxel-induced mechanical hypersensitivity in male rats. By contrast, LY2828360 (10 mg/kg i.p.), administered acutely, attenuated mechanical hypersensitivity in a spared nerve injury (SNI) rat model, whereas the low dose (3 mg/kg i.p.) was ineffective. In both models, efficacy of LY2828360 was sustained following 10 days of repeated dosing. LY2828360 (3 mg/kg i.p.) also prevented development of tolerance to the opioid analgesic morphine (6 mg/kg i.p.) in rats with SNI when co-administered. LY2828360 (3 mg/kg i.p.) did not produce preference or aversion in the conditioned place preference (CPP) test in rats when administered alone but blocked CPP to morphine (6 mg/kg i.p.). Lastly, LY2828360 (3 mg/kg i.p.) did not alter the acquisition of i.v. morphine self-administration under fixed ratio 1 (FR1) and 3 (FR3) or motivation to work for morphine under a progressive ratio (PR) schedule of reinforcement.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonah L Wirt
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Idaira Oliva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonathon D Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Wang Z, Li ZZ, Han XM, Dong J, Yin MY, Song J, Zhuang T, Wang Y. Discovery of Novel pH-Sensitive μ-Opioid Receptor Agonists as Potent Analgesics with Reduced Side Effects. ACS Med Chem Lett 2025; 16:285-293. [PMID: 39967625 PMCID: PMC11831565 DOI: 10.1021/acsmedchemlett.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Although μ-opioid receptor (MOR) agonists are the most effective drugs for relieving acute pain, nonselective activation of MOR can also lead to serious side effects. There is an urgent need for novel analgesics that can selectively activate MOR under pathological conditions while avoiding side effects under normal physiological conditions. In this study, a series of pH-sensitive 4-propionamide piperidine derivatives were synthesized and evaluated for their MOR activities and antinociceptive effects. Among them, compound 22 showed high pH sensitivity for MOR with a K i pH 7.4/K i pH 6.4 ratio of 6.6. Compound 22 acted as an MOR agonist in the functional test. Compound 22 exhibited good antinociceptive effects in the acetic acid-induced writhing test (ED50 = 1.5 mg/kg) and carrageenan-induced inflammatory pain model (ED50 = 3.3 mg/kg) in mice. Moreover, compound 22 showed reduced side effects when compared to the equianalgesic dose of fentanyl, including physical dependence, hyperlocomotion, and constipation. Compound 22 holds promise as a safe candidate for further development as an analgesic with diminished side effects.
Collapse
Affiliation(s)
- Zhen Wang
- School
of Pharmaceutical Sciences, Hubei University
of Medicine, Shiyan 442000, China
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zong-Zheng Li
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiao-Min Han
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Dong
- Grand
Life Sciences (Liaoning) Co., LTD., Shenyang 110171, China
| | - Ming-Yue Yin
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Song
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhuang
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- College
of Life Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China
| | - Yuan Wang
- School
of Pharmaceutical Sciences, Hubei University
of Medicine, Shiyan 442000, China
| |
Collapse
|
3
|
Limerick G, Uniyal A, Ford N, He S, Grenald SA, Zhang C, Cui X, Sivanesan E, Dong X, Guan Y, Raja SN. Peripherally restricted cannabinoid and mu-opioid receptor agonists synergistically attenuate neuropathic mechanical hypersensitivity in mice. Pain 2024; 165:2563-2577. [PMID: 38815196 PMCID: PMC11511654 DOI: 10.1097/j.pain.0000000000003278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
ABSTRACT Many medications commonly used to treat neuropathic pain are associated with significant, dose-limiting adverse effects, including sedation, dizziness, and fatigue. These adverse effects are due to the activity of these medications within the central nervous system. The objective of this work was to investigate the interactions between peripherally restricted cannabinoid receptor and mu-opioid receptor (MOR) agonists on ongoing and evoked neuropathic pain behaviors in mouse models. RNAscope analysis of cannabinoid receptor type 1 (CB1R) and MOR mRNA demonstrated that the mRNA of both receptors is colocalized in both mouse and human dorsal root ganglion. Single-cell RNAseq of dorsal root ganglion from chronic constriction injury mice showed that the mRNA of both receptors ( Cnr1 and Oprm1 ) is coexpressed across different neuron clusters. Myc-CB1R and FLAG-MOR were cotransfected into immortalized HEK-293T cells and were found to interact at a subcellular level. We also find that CB-13 (a peripherally restricted dual CB1R and cannabinoid receptor type 2 agonist) and DALDA (a peripherally restricted MOR agonist) both attenuate mechanical hypersensitivity in a murine model of neuropathic pain. Using isobolographic analysis, we demonstrate that when coadministered, these agents synergistically attenuate mechanical hypersensitivity. Importantly, combination dosing of these agents does not cause any detectable preferential behaviors or motor impairment. However, repeated dosing of these agents is associated with the development of tolerance to these drugs. Collectively, these findings suggest that leveraging synergistic pain inhibition between cannabinoid receptor and MOR agonists in peripheral sensory neurons may be worth examining in patients with neuropathic pain.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/genetics
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Mice
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/drug effects
- Humans
- Male
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- HEK293 Cells
- Drug Synergism
- Mice, Inbred C57BL
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Disease Models, Animal
- Analgesics, Opioid/pharmacology
Collapse
Affiliation(s)
- Gerard Limerick
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Neil Ford
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - ShaoQiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Shaness A. Grenald
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Xinzhong Dong
- Department of Neuroscience, School of Medicine, The Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205
- Department of Neurology and Neurosurgery, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
- Department of Dermatology, School of Medicine, The Johns Hopkins University, 1501 Jefferson Street, Baltimore, MD 21205
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
- Department of Neurology and Neurosurgery, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
- Department of Neurology and Neurosurgery, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| |
Collapse
|
4
|
Guenther KG, Lin X, Xu Z, Makriyannis A, Romero J, Hillard CJ, Mackie K, Hohmann AG. Cannabinoid CB 2 receptors in primary sensory neurons are implicated in CB 2 agonist-mediated suppression of paclitaxel-induced neuropathic nociception and sexually-dimorphic sparing of morphine tolerance. Biomed Pharmacother 2024; 176:116879. [PMID: 38850666 PMCID: PMC11209786 DOI: 10.1016/j.biopha.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Xiaoyan Lin
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Zhili Xu
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Med. Col. Of Wisconsin, Milwaukee, WI, United States
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
5
|
Guenther KG, Lin X, Xu Z, Makriyannis A, Romero J, Hillard CJ, Mackie K, Hohmann AG. Cannabinoid CB 2 receptors in primary sensory neurons are implicated in CB 2 agonist-mediated suppression of paclitaxel-induced neuropathic nociception and sexually-dimorphic sparing of morphine tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583426. [PMID: 38496640 PMCID: PMC10942397 DOI: 10.1101/2024.03.05.583426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cannabinoid CB 2 agonists show therapeutic efficacy without the unwanted side effects commonly associated with direct activation of CB 1 receptors. The G protein-biased CB 2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks the development of morphine tolerance in this model. However, the specific cell types involved in this phenomenon have never been investigated and whether this therapeutic profile is observed in female mice remains poorly understood. We used conditional deletion of CB 2 receptors from specific cell populations to determine the population(s) mediating the anti-allodynic and morphine-sparing effects of CB 2 agonists. Anti-allodynic effects of structurally distinct CB 2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB 2 f/f mice of either sex. The anti-allodynic effect of the CB 2 agonists were absent in conditional knockout (KO) mice lacking CB 2 receptors in peripheral sensory neurons (Advillin CRE/+ ; CB 2 f/f ) but preserved in mice lacking CB 2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1 CRE/+ ; CB 2 f/f ). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male mice but absent in female mice of any genotype. In mice with established paclitaxel-induced neuropathy, prior LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the subsequent development of morphine tolerance in male CB 2 f/f mice but was absent in male (or female) Advillin CRE/+ ; CB 2 f/f mice. LY2828360-induced sparing of morphine tolerance was preserved in male CX3CR1 CRE/+ ; CB 2 f/f mice, but this effect was not observed in female CX3CR1 CRE/+ ; CB 2 f/f mice. Similarly, co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed tolerance to the anti-allodynic efficacy of morphine in paclitaxel-treated male CB 2 f/f mice, but this effect was absent in female CB 2 f/f mice and Advillin CRE/+ ; CB 2 f/f mice of either sex. Additionally, LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical and cold allodynia in either CB 2 f/f or CX3CR1 CRE/+ ; CB 2 f/f mice of either sex. Our studies reveal that CB 2 receptors in primary sensory neurons are required for the anti-allodynic effects of CB 2 agonists in a mouse model of paclitaxel-induced neuropathic nociception. We also find that CB 2 agonists acting on primary sensory neurons produce a sexually-dimorphic sparing of morphine tolerance in males, but not female, paclitaxel-treated mice.
Collapse
|
6
|
Uniyal A, Tiwari V, Tsukamoto T, Dong X, Guan Y, Raja SN. Targeting sensory neuron GPCRs for peripheral neuropathic pain. Trends Pharmacol Sci 2023; 44:1009-1027. [PMID: 37977131 PMCID: PMC10657387 DOI: 10.1016/j.tips.2023.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Despite the high prevalence of peripheral neuropathic pain (NP) conditions and significant progress in understanding its underlying mechanisms, the management of peripheral NP remains inadequate. Existing pharmacotherapies for NP act primarily on the central nervous system (CNS) and are often associated with CNS-related adverse effects, limiting their clinical effectiveness. Mounting preclinical evidence indicates that reducing the heightened activity in primary sensory neurons by targeting G-protein-coupled receptors (GPCRs), without activating these receptors in the CNS, relieves pain without central adverse effects. In this review, we focus on recent advancements in GPCR-mediated peripheral pain relief and discuss strategies to advance the development of more effective and safer therapies for peripheral NP by shifting from traditional CNS modulatory approaches toward selective targeting of GPCRs on primary sensory neurons.
Collapse
Affiliation(s)
- Ankit Uniyal
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, India
| | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasa N Raja
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|