1
|
Moharramipour A, Takahashi T, Kitazawa S. Distinctive modes of cortical communications in tactile temporal order judgment. Cereb Cortex 2023; 33:2982-2996. [PMID: 35811300 DOI: 10.1093/cercor/bhac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Temporal order judgment of two successive tactile stimuli delivered to our hands is often inverted when we cross our hands. The present study aimed to identify time-frequency profiles of the interactions across the cortical network associated with the crossed-hand tactile temporal order judgment task using magnetoencephalography. We found that the interactions across the cortical network were channeled to a low-frequency band (5-10 Hz) when the hands were uncrossed. However, the interactions became activated in a higher band (12-18 Hz) when the hands were crossed. The participants with fewer inverted judgments relied mainly on the higher band, whereas those with more frequent inverted judgments (reversers) utilized both. Moreover, reversers showed greater cortical interactions in the higher band when their judgment was correct compared to when it was inverted. Overall, the results show that the cortical network communicates in two distinctive frequency modes during the crossed-hand tactile temporal order judgment task. A default mode of communications in the low-frequency band encourages inverted judgments, and correct judgment is robustly achieved by recruiting the high-frequency mode.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory for Consciousness, Center for Brain Science (CBS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan
| | - Toshimitsu Takahashi
- Department of Physiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, 1-3 Yamakaoka, Suita, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Moharramipour A, Kitazawa S. What Underlies a Greater Reversal in Tactile Temporal Order Judgment When the Hands Are Crossed? A Structural MRI Study. Cereb Cortex Commun 2021; 2:tgab025. [PMID: 34296170 PMCID: PMC8152922 DOI: 10.1093/texcom/tgab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Our subjective temporal order of two successive tactile stimuli, delivered one to each hand, is often inverted when our hands are crossed. However, there is great variability among different individuals. We addressed the question of why some show almost complete reversal, but others show little reversal. To this end, we obtained structural magnetic resonance imaging data from 42 participants who also participated in the tactile temporal order judgment (TOJ) task. We extracted the cortical thickness and the convoluted surface area as cortical characteristics in 68 regions. We found that the participants with a thinner, larger, and more convoluted cerebral cortex in 10 regions, including the right pars-orbitalis, right and left postcentral gyri, left precuneus, left superior parietal lobule, right middle temporal gyrus, left superior temporal gyrus, right cuneus, left supramarginal gyrus, and right rostral middle frontal gyrus, showed a smaller degree of judgment reversal. In light of major theoretical accounts, we suggest that cortical elaboration in the aforementioned regions improve the crossed-hand TOJ performance through better integration of the tactile stimuli with the correct spatial representations in the left parietal regions, better representation of spatial information in the postcentral gyrus, or improvement of top-down inhibitory control by the right pars-orbitalis.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD. Breathing above the brain stem: volitional control and attentional modulation in humans. J Neurophysiol 2017; 119:145-159. [PMID: 28954895 DOI: 10.1152/jn.00551.2017] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the neurophysiology of respiration has traditionally focused on automatic brain stem processes, higher brain mechanisms underlying the cognitive aspects of breathing are gaining increasing interest. Therapeutic techniques have used conscious control and awareness of breathing for millennia with little understanding of the mechanisms underlying their efficacy. Using direct intracranial recordings in humans, we correlated cortical and limbic neuronal activity as measured by the intracranial electroencephalogram (iEEG) with the breathing cycle. We show this to be the direct result of neuronal activity, as demonstrated by both the specificity of the finding to the cortical gray matter and the tracking of breath by the gamma-band (40-150 Hz) envelope in these structures. We extend prior observations by showing the iEEG signal to track the breathing cycle across a widespread network of cortical and limbic structures. We further demonstrate a sensitivity of this tracking to cognitive factors by using tasks adapted from cognitive behavioral therapy and meditative practice. Specifically, volitional control and awareness of breathing engage distinct but overlapping brain circuits. During volitionally paced breathing, iEEG-breath coherence increases in a frontotemporal-insular network, and during attention to breathing, we demonstrate increased coherence in the anterior cingulate, premotor, insular, and hippocampal cortices. Our findings suggest that breathing can act as an organizing hierarchical principle for neuronal oscillations throughout the brain and detail mechanisms of how cognitive factors impact otherwise automatic neuronal processes during interoceptive attention. NEW & NOTEWORTHY Whereas the link between breathing and brain activity has a long history of application to therapy, its neurophysiology remains unexplored. Using intracranial recordings in humans, we show neuronal activity to track the breathing cycle throughout widespread cortical/limbic sites. Volitional pacing of the breath engages frontotemporal-insular cortices, whereas attention to automatic breathing modulates the cingulate cortex. Our findings imply a fundamental role of breathing-related oscillations in driving neuronal activity and provide insight into the neuronal mechanisms of interoceptive attention.
Collapse
Affiliation(s)
- Jose L Herrero
- The Feinstein Institute for Medical Research, Manhasset, New York.,Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Simon Khuvis
- The Feinstein Institute for Medical Research, Manhasset, New York.,Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Erin Yeagle
- The Feinstein Institute for Medical Research, Manhasset, New York.,Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Moran Cerf
- Interdepartmental Neuroscience Program and Kellogg School of Management, Northwestern University , Evanston, Illinois
| | - Ashesh D Mehta
- The Feinstein Institute for Medical Research, Manhasset, New York.,Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York
| |
Collapse
|
4
|
Kaulmann D, Hermsdörfer J, Johannsen L. Disruption of right posterior parietal cortex by continuous Theta Burst Stimulation alters the control of body balance in quiet stance. Eur J Neurosci 2017; 45:671-678. [PMID: 28092413 DOI: 10.1111/ejn.13522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
Abstract
Control of body balance relies on the integration of multiple sensory modalities. Lightly touching an earth-fixed reference augments the control of body sway. We aimed to advance the understanding of cortical integration of an afferent signal from light fingertip contact (LT) for the stabilisation of standing body balance. Assuming that right-hemisphere Posterior Parietal Cortex (rPPC) is involved in the integration and processing of touch for postural control, we expected that disrupting rPPC would attenuate any effects of light touch. Eleven healthy right-handed young adults received continuous Theta Burst Stimulation over the left- and right-hemisphere PPC with sham stimulation as an additional control. Before and after stimulation, sway of the blindfolded participants was assessed in Tandem-Romberg stance with and without haptic contact. We analysed sway in terms of the variability of Centre-of-Pressure (CoP) rate of change as well as Detrended Fluctuation Analysis of CoP position. Light touch decreased sway variability in both directions but showed direction-specific changes in its dynamic complexity: a positive increase in complexity in the mediolateral direction coincided with a reduction in the anteroposterior direction. rPPC disruption affected the control of body sway in two ways: first, it led to an overall decrease in sway variability irrespective of the presence of LT; second, it reduced the complexity of sway with LT at the contralateral, non-dominant hand. We speculate that rPPC is involved in the active exploration of the postural stability state, with utilisation of LT for this purpose if available, by normally inhibiting mechanisms of postural stiffness regulation.
Collapse
Affiliation(s)
- David Kaulmann
- Human Movement Science, Department of Sport and Health Sciences, Technische Universität München, München, Germany
| | - Joachim Hermsdörfer
- Human Movement Science, Department of Sport and Health Sciences, Technische Universität München, München, Germany
| | - Leif Johannsen
- Human Movement Science, Department of Sport and Health Sciences, Technische Universität München, München, Germany.,School of Health Sciences, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
5
|
Findlater SE, Dukelow SP. Upper Extremity Proprioception After Stroke: Bridging the Gap Between Neuroscience and Rehabilitation. J Mot Behav 2016; 49:27-34. [PMID: 27726645 DOI: 10.1080/00222895.2016.1219303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Proprioception is an important aspect of function that is often impaired in the upper extremity following stroke. Unfortunately, neurorehabilitation has few evidence based treatment options for those with proprioceptive deficits. The authors consider potential reasons for this disparity. In doing so, typical assessments and proprioceptive intervention studies are discussed. Relevant evidence from the field of neuroscience is examined. Such evidence may be used to guide the development of targeted interventions for upper extremity proprioceptive deficits after stroke. As researchers become more aware of the impact of proprioceptive deficits on upper extremity motor performance after stroke, it is imperative to find successful rehabilitation interventions to target these deficits and ultimately improve daily function.
Collapse
Affiliation(s)
- Sonja E Findlater
- a Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Sean P Dukelow
- a Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
6
|
Findlater SE, Desai JA, Semrau JA, Kenzie JM, Rorden C, Herter TM, Scott SH, Dukelow SP. Central perception of position sense involves a distributed neural network - Evidence from lesion-behavior analyses. Cortex 2016; 79:42-56. [PMID: 27085894 DOI: 10.1016/j.cortex.2016.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/02/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022]
Abstract
It is well established that proprioceptive inputs from the periphery are important for the constant update of arm position for perception and guiding motor action. The degree to which we are consciously aware of the position of our limb depends on the task. Our understanding of the central processing of position sense is rather limited, largely based on findings in animals and individual human case studies. The present study used statistical lesion-behavior analysis and an arm position matching task to investigate position sense in a large sample of subjects after acute stroke. We excluded subjects who performed abnormally on clinical testing or a robotic visually guided reaching task with their matching arm in order to minimize the potential confound of ipsilesional impairment. Our findings revealed that a number of regions are important for processing position sense and include the posterior parietal cortex, the transverse temporal gyrus, and the arcuate fasciculus. Further, our results revealed that position sense has dissociable components - spatial variability, perceived workspace area, and perceived workspace location. Each component is associated with unique neuroanatomical correlates. These findings extend the current understanding of the neural processing of position sense and identify some brain areas that are not classically associated with proprioception.
Collapse
Affiliation(s)
- Sonja E Findlater
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jamsheed A Desai
- Calgary Stroke Program, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Semrau
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jeffrey M Kenzie
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Troy M Herter
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Calgary Stroke Program, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Tamè L, Pavani F, Papadelis C, Farnè A, Braun C. Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 2014; 36:1506-23. [PMID: 25514844 DOI: 10.1002/hbm.22719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 11/06/2022] Open
Abstract
Animal, as well as behavioural and neuroimaging studies in humans have documented integration of bilateral tactile information at the level of primary somatosensory cortex (SI). However, it is still debated whether integration in SI occurs early or late during tactile processing, and whether it is somatotopically organized. To address both the spatial and temporal aspects of bilateral tactile processing we used magnetoencephalography in a tactile repetition-suppression paradigm. We examined somatosensory evoked-responses produced by probe stimuli preceded by an adaptor, as a function of the relative position of adaptor and probe (probe always at the left index finger; adaptor at the index or middle finger of the left or right hand) and as a function of the delay between adaptor and probe (0, 25, or 125 ms). Percentage of response-amplitude suppression was computed by comparing paired (adaptor + probe) with single stimulations of adaptor and probe. Results show that response suppression varies differentially in SI and SII as a function of both spatial and temporal features of the stimuli. Remarkably, repetition suppression of SI activity emerged early in time, regardless of whether the adaptor stimulus was presented on the same and the opposite body side with respect to the probe. These novel findings support the notion of an early and somatotopically organized inter-hemispheric integration of tactile information in SI.
Collapse
Affiliation(s)
- Luigi Tamè
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | | | | | | |
Collapse
|
8
|
Kafri M, Zaltsberg N, Dickstein R. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects. Somatosens Mot Res 2014; 32:1-7. [PMID: 25059799 DOI: 10.3109/08990220.2014.937413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Somatosensory stimulation modulates cortical and corticospinal excitability and consequently affects motor output. Therefore, low-amplitude transcutaneous electrical nerve stimulation (TENS) has the potential to elicit favorable motor responses. The purpose of the two presented pilot studies was to shed light on TENS parameters that are relevant for the enhancement of two desirable motor outcomes, namely, electromyographic (EMG) activity and contraction strength of the finger flexors and wrist muscles. In 5 and 10 healthy young adults (in Study I and Study II, respectively) TENS was delivered to the volar aspect of the forearm. We manipulated TENS frequency (150 Hz vs. 5 Hz), length of application (10, 20, and 60 min), and side of application (unilateral, right forearm vs. bilateral forearms). EMG amplitude and grip force were measured before (Pre), immediately after (Post), and following 15 min of no stimulation (Study I only). The results indicated that low-frequency bursts of TENS applied to the skin overlying the finger flexor muscles enhance the EMG activity of the finger flexors and grip force. The increase in EMG activity of the flexor muscles was observed after 20 min of stimulation, while grip force was increased only after 1 h. The effects of uni- and bilateral TENS were comparable. These observations allude to a modulatory effect of TENS on the tested motor responses; however, unequivocal conclusions of the findings are hampered by individual differences that affect motor outcomes, such as in level of attention.
Collapse
Affiliation(s)
- Michal Kafri
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa , Haifa , Israel
| | | | | |
Collapse
|
9
|
Abstract
The human somatosensory cortex (S1) is not among the brain areas usually associated with visuospatial attention. However, such a function can be presumed, given the recently identified eye proprioceptive input to S1 and the established links between gaze and attention. Here we investigated a rare patient with a focal lesion of the right postcentral gyrus that interferes with the processing of eye proprioception without affecting the ability to locate visual objects relative to her body or to execute eye movements. As a behavioral measure of spatial attention, we recorded fixation time during visual search and reaction time for visual discrimination in lateral displays. In contrast to a group of age-matched controls, the patient showed a gradient in looking time and in visual sensitivity toward the midline. Because an attention bias in the opposite direction, toward the ipsilesional space, occurs in patients with spatial neglect, in a second study, we asked whether the incidental coinjury of S1 together with the neglect-typical perisylvian lesion leads to a milder neglect. A voxelwise lesion behavior mapping analysis of a group of right-hemisphere stroke patients supported this hypothesis. The effect of an isolated S1 lesion on visual exploration and visual sensitivity as well as the modulatory role of S1 in spatial neglect suggest a role of this area in visuospatial attention. We hypothesize that the proprioceptive gaze signal in S1, although playing only a minor role in locating visual objects relative to the body, affects the allocation of attention in the visual space.
Collapse
|
10
|
Scarpina F, Van der Stigchel S, Nijboer TCW, Dijkerman HC. Prism adaptation changes the subjective proprioceptive localization of the hands. J Neuropsychol 2013; 9:21-32. [DOI: 10.1111/jnp.12032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 10/03/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Federica Scarpina
- Department of Brain and Behavioural Sciences; University of Pavia; Italy
- Experimental Psychology; Helmholtz Institute; Utrecht University; Utrecht the Netherlands
| | | | - Tanja Cornelia Wilhelmina Nijboer
- Experimental Psychology; Helmholtz Institute; Utrecht University; Utrecht the Netherlands
- Rudolf Magnus Institute of Neuroscience and Centre of Excellence for Rehabilitation Medicine; University Medical Centre Utrecht and Rehabilitation Centre De Hoogstraat; Utrecht the Netherlands
- Department of Neurology; University Medical Center; Utrecht the Netherlands
| | - Hendrik Christiaan Dijkerman
- Experimental Psychology; Helmholtz Institute; Utrecht University; Utrecht the Netherlands
- Department of Neurology; University Medical Center; Utrecht the Netherlands
| |
Collapse
|
11
|
Eye proprioception used for visual localization only if in conflict with the oculomotor plan. J Neurosci 2012; 32:8569-73. [PMID: 22723697 DOI: 10.1523/jneurosci.1488-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both the corollary discharge of the oculomotor command and eye muscle proprioception provide eye position information to the brain. Two contradictory models have been suggested about how these two sources contribute to visual localization: (1) only the efference copy is used whereas proprioception is a slow recalibrator of the forward model, and (2) both signals are used together as a weighted average. We had the opportunity to test these hypotheses in a patient (R.W.) with a circumscribed lesion of the right postcentral gyrus that overlapped the human eye proprioceptive representation. R.W. was as accurate and precise as the control group (n = 19) in locating a lit LED that she viewed through the eye contralateral to the lesion. However, when the task was preceded by a brief (<1 s), gentle push to the closed eye, which perturbed eye position and stimulated eye proprioceptors in the absence of a motor command, R.W.'s accuracy significantly decreased compared with both her own baseline and the healthy control group. The data suggest that in normal conditions, eye proprioception is not used for visual localization. Eye proprioception is, however, continuously monitored to be incorporated into the eye position estimate when a mismatch with the efference copy of the motor command is detected. Our result thus supports the first model and, furthermore, identifies the limits for its operation.
Collapse
|