1
|
Gao C, Wu J, Cheng Y, Ke Y, Qu X, Yang M, Hartwigsen G, Chen L. Continuous theta-burst stimulation demonstrates language-network-specific causal effects on syntactic processing. Neuroimage 2025; 306:121014. [PMID: 39793638 DOI: 10.1016/j.neuroimage.2025.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Hierarchical syntactic structure processing is proposed to be at the core of the human language faculty. Syntactic processing is supported by the left fronto-temporal language network, including a core area in the inferior frontal gyrus as well as its interaction with the posterior temporal lobe (i.e., "IFG + pTL"). Moreover, during complex syntactic processes, left IFG also interacts with executive control regions, such as the superior parietal lobule (SPL). However, the functional relevance of these network interactions is largely unclear. In particular, it remains to be demonstrated whether the language network plays a specific causal role in comparatively challenging syntactic processes, separable from the interaction between IFG and other general cognitive regions (i.e., "IFG + SPL" in the present study). The present study was designed to address this question. Thirty healthy adult Chinese native speakers underwent four continuous theta-burst stimulation (cTBS) sessions: stimulation over IFG, stimulation over IFG + pTL, stimulation over IFG + SPL, and sham stimulation over IFG + irrelevant region in a pseudo-randomized order. In each session, participants were required to label the syntactic categories of jabberwocky sequences retaining real Chinese function words (e.g., "ムウ" is labeled as a verb phrase (VP): "[VP [V]N]", similar to "ziff-ed a wug", where "ziff" and "wug" are nonsense pseudowords, and the whole phrase is a VP). Contrasted with sham cTBS, change percentage of accuracy rates (ΔACCR%), reaction times (ΔRT%), and coefficient of variation (ΔCV%) were calculated and compared across conditions. First-order behavioral results showed a significantly higher ΔCV% after stimulating IFG + pTL compared to stimulating the IFG + SPL, indicating that syntactic processing became more unstable. Second-order representational similarity analysis (RSA) results revealed that cTBS effects on IFG + pTL selectively depended on the hierarchical embedding depth, a key measure of syntactic hierarchical complexity, whereas the effects on IFG + SPL were sensitive to the dependency length, a crucial index reflecting the working memory load. Collectively, these findings reveal the specific causal relevance of the language areas for hierarchical syntactic processing, separable from other general cognitive (such as working memory) capacities. These results shed light on the uniqueness and the specific causal role of the language network for the human language faculty, further supporting the causally separable view of the functional dissociation between the language network and the domain-general/multiple-demand network.
Collapse
Affiliation(s)
- Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yuming Ke
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
2
|
El Ouardi L, Yeou M, Faroqi-Shah Y. Neural correlates of pronoun processing: An activation likelihood estimation meta-analysis. BRAIN AND LANGUAGE 2023; 246:105347. [PMID: 37847932 PMCID: PMC11305457 DOI: 10.1016/j.bandl.2023.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Pronouns are unique linguistic devices that allow for the expression of referential relationships. Despite their communicative utility, the neural correlates of the operations involved in reference assignment and/or resolution, are not well-understood. The present study synthesized the neuroimaging literature on pronoun processing to test extant theories of pronoun comprehension. Following the PRISMA guidelines and thebest-practice recommendations for neuroimaging meta-analyses, a systematic literature search and record assessment were performed. As a result, 16 fMRI studies were included in the meta-analysis, and were coded in Scribe 3.6 for inclusion in the BrainMap database. The activation coordinates for the contrasts of interest were transformed into Talairach space and submitted to an Activation Likelihood Estimation (ALE) meta-analysis in GingerALE 3.0.1. The results indicated that pronoun processing had functional convergence in the left posterior middle and superior temporal gyri, potentially reflecting the retrieval, prediction and integration roles of these areas for pronoun processing.
Collapse
Affiliation(s)
- Loubna El Ouardi
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States; Applied Language and Culture Studies Laboratory, Chouaib Doukkali University, El Jadida, Morocco.
| | - Mohamed Yeou
- Applied Language and Culture Studies Laboratory, Chouaib Doukkali University, El Jadida, Morocco
| | - Yasmeen Faroqi-Shah
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
3
|
Zhang S, Li J, Yang Y, Hale J. Decoding the silence: Neural bases of zero pronoun resolution in Chinese. BRAIN AND LANGUAGE 2022; 224:105050. [PMID: 34861608 DOI: 10.1016/j.bandl.2021.105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Chinese is one of many languages that can drop subjects. We report an fMRI study of language comprehension processes in these "zero pronoun" cases. The fMRI data come from Chinese speakers who listened to an audiobook. We conducted both univariate GLM and multivariate pattern analysis (MVPA) on these data. We found increased left Temporal Lobe activity for zero pronouns compared to overt subjects, suggesting additional effort searching for an antecedent during zero pronoun resolution. MVPA further revealed that the intended referent of a zero pronoun can be decoded in the Parahippocampal Gyrus and the Precuneus shortly after its presentation. This highlights the role of memory and discourse-level processing in resolving referential expressions, including unspoken ones, in naturalistic language comprehension.
Collapse
Affiliation(s)
| | - Jixing Li
- New York University Abu Dhabi, United Arab Emirates
| | | | - John Hale
- University of Georgia, United States
| |
Collapse
|
4
|
Chen L, Goucha T, Männel C, Friederici AD, Zaccarella E. Hierarchical syntactic processing is beyond mere associating: Functional magnetic resonance imaging evidence from a novel artificial grammar. Hum Brain Mapp 2021; 42:3253-3268. [PMID: 33822433 PMCID: PMC8193521 DOI: 10.1002/hbm.25432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Grammar is central to any natural language. In the past decades, the artificial grammar of the AnBn type in which a pair of associated elements can be nested in the other pair was considered as a desirable model to mimic human language syntax without semantic interference. However, such a grammar relies on mere associating mechanisms, thus insufficient to reflect the hierarchical nature of human syntax. Here, we test how the brain imposes syntactic hierarchies according to the category relations on linearized sequences by designing a novel artificial “Hierarchical syntactic structure‐building Grammar” (HG), and compare this to the AnBn grammar as a “Nested associating Grammar” (NG) based on multilevel associations. Thirty‐six healthy German native speakers were randomly assigned to one of the two grammars. Both groups performed a grammaticality judgment task on auditorily presented word sequences generated by the corresponding grammar in the scanner after a successful explicit behavioral learning session. Compared to the NG group, we found that the HG group showed a (a) significantly higher involvement of Brodmann area (BA) 44 in Broca's area and the posterior superior temporal gyrus (pSTG); and (b) qualitatively distinct connectivity between the two regions. Thus, the present study demonstrates that the build‐up process of syntactic hierarchies on the basis of category relations critically relies on a distinctive left‐hemispheric syntactic network involving BA 44 and pSTG. This indicates that our novel artificial grammar can constitute a suitable experimental tool to investigate syntax‐specific processes in the human brain.
Collapse
Affiliation(s)
- Luyao Chen
- College of Chinese Language and Culture, Beijing Normal University, Beijing.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tomás Goucha
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
5
|
Lukic S, Thompson CK, Barbieri E, Chiappetta B, Bonakdarpour B, Kiran S, Rapp B, Parrish TB, Caplan D. Common and distinct neural substrates of sentence production and comprehension. Neuroimage 2021; 224:117374. [PMID: 32949711 PMCID: PMC10134242 DOI: 10.1016/j.neuroimage.2020.117374] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023] Open
Abstract
Functional neuroimaging and lesion-symptom mapping investigations implicate a left frontal-temporal-parietal network for sentence processing. The majority of studies have focused on sentence comprehension, with fewer in the domain of sentence production, which have not fully elucidated overlapping and/or unique brain structures associated with the two domains, particularly for sentences with noncanonical word order. Using voxel-based lesion symptom mapping (VLSM) we examined the relationship between lesions within the left hemisphere language network and both sentence comprehension and production of simple and complex syntactic structures in 76 participants with chronic stroke-induced aphasia. Results revealed shared regions across domains in the anterior and posterior superior temporal gyri (aSTG, pSTG), and the temporal pole (adjusted for verb production/comprehension). Additionally, comprehension was associated with lesions in the anterior and posterior middle temporal gyri (aMTG, pMTG), the MTG temporooccipital regions, SMG/AG, central and parietal operculum, and the insula. Subsequent VLSM analyses (production versus comprehension) revealed critical regions associated with each domain: anterior temporal lesions were associated with production; posterior temporo-parietal lesions were associated with comprehension, implicating important roles for regions within the ventral and dorsal stream processing routes, respectively. Processing of syntactically complex, noncanonical (adjusted for canonical), sentences was associated with damage to the pSTG across domains, with additional damage to the pMTG and IPL associated with impaired sentence comprehension, suggesting that the pSTG is crucial for computing noncanonical sentences across domains and that the pMTG, and IPL are necessary for re-analysis of thematic roles as required for resolution of long-distance dependencies. These findings converge with previous studies and extend our knowledge of the neural mechanisms of sentence comprehension to production, highlighting critical regions associated with both domains, and further address the mechanism engaged for syntactic computation, controlled for the contribution of verb processing.
Collapse
|
6
|
Shared neural resources of rhythm and syntax: An ALE meta-analysis. Neuropsychologia 2019; 137:107284. [PMID: 31783081 DOI: 10.1016/j.neuropsychologia.2019.107284] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022]
Abstract
A growing body of evidence has highlighted behavioral connections between musical rhythm and linguistic syntax, suggesting that these abilities may be mediated by common neural resources. Here, we performed a quantitative meta-analysis of neuroimaging studies using activation likelihood estimate (ALE) to localize the shared neural structures engaged in a representative set of musical rhythm (rhythm, beat, and meter) and linguistic syntax (merge movement, and reanalysis) operations. Rhythm engaged a bilateral sensorimotor network throughout the brain consisting of the inferior frontal gyri, supplementary motor area, superior temporal gyri/temporoparietal junction, insula, intraparietal lobule, and putamen. By contrast, syntax mostly recruited the left sensorimotor network including the inferior frontal gyrus, posterior superior temporal gyrus, premotor cortex, and supplementary motor area. Intersections between rhythm and syntax maps yielded overlapping regions in the left inferior frontal gyrus, left supplementary motor area, and bilateral insula-neural substrates involved in temporal hierarchy processing and predictive coding. Together, this is the first neuroimaging meta-analysis providing detailed anatomical overlap of sensorimotor regions recruited for musical rhythm and linguistic syntax.
Collapse
|
7
|
Chen L, Wu J, Fu Y, Kang H, Feng L. Neural substrates of word category information as the basis of syntactic processing. Hum Brain Mapp 2019; 40:451-464. [PMID: 30240492 PMCID: PMC6865558 DOI: 10.1002/hbm.24386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/19/2023] Open
Abstract
The ability to use word category information (WCI) for syntactic structure building has been hypothesized to be the essence of human language faculty. The neural substrate of the ability of using the WCI for the complex syntactic hierarchical structure processing, however, is yet unknown. Therefore, we directly conducted an fMRI experiment by using a pseudo-Chinese artificial language with syntactic structures containing a center-embedded relative clause. Thirty non-Chinese native (Korean) speakers were randomly divided into two groups: one acquired WCI and WCI-based syntactic rules (the WCI group) before the scanning session, and the other did not (the non-WCI group). Both groups were required to judge the grammaticality of the testing sentences, with critical long-distance dependencies between two elements (the main verb and the relativizer). Behaviorally, the WCI group's accuracy was significantly higher and its reaction time was shorter. The scanning results showed that the left superior temporal gyrus (STG) and Broca's area were more strongly activated for the WCI group, and the dynamic causal modeling analyses revealed a distinct effective connectivity pattern for this group. Therefore, the present research, for the first time, reveals that the activation of and the functional connectivity between Broca's area and the left STG play a critical role in the ability of the rule-based use of the WCI which is crucial for complex hierarchical structure building, and might be substantially corresponding to the "labeling competence" within the linguistic framework.
Collapse
Affiliation(s)
- Luyao Chen
- College of Chinese Language and Culture, Beijing Normal UniversityBeijingChina
- Department of NeuropsychologyMax Plank Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Junjie Wu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Yongben Fu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Huntae Kang
- College of Chinese Language and Culture, Beijing Normal UniversityBeijingChina
| | - Liping Feng
- College of Chinese Language and Culture, Beijing Normal UniversityBeijingChina
| |
Collapse
|
8
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
9
|
Progovac L, Rakhlin N, Angell W, Liddane R, Tang L, Ofen N. Neural Correlates of Syntax and Proto-Syntax: Evolutionary Dimension. Front Psychol 2018; 9:2415. [PMID: 30618908 PMCID: PMC6302005 DOI: 10.3389/fpsyg.2018.02415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
The present fMRI study tested predictions of the evolution-of-syntax framework which analyzes certain structures as remnants ("fossils") of a non-hierarchical (non-recursive) proto-syntactic stage in the evolution of language (Progovac, 2015, 2016). We hypothesized that processing of these structures, in comparison to more modern hierarchical structures, will show less activation in the brain regions that are part of the syntactic network, including Broca's area (BA 44 and 45) and the basal ganglia, i.e., the network bolstered in the line of descent of humans through genetic mutations that contributed to present-day dense neuronal connectivity among these regions. Fourteen healthy native English-speaking adults viewed written stimuli consisting of: (1) full sentences (FullS; e.g., The case is closed); (2) Small Clauses (SC; e.g., Case closed); (3) Complex hierarchical compounds (e.g., joy-killer); and (4) Simple flat compounds (e.g., kill-joy). SC (compared to FullS) resulted in reduced activation in the left BA 44 and right basal ganglia. Simple (relative to complex) compounds resulted in increased activation in the inferior temporal gyrus and the fusiform gyrus (BA 37/19), areas implicated in visual and semantic processing. We discuss our findings in the context of current theories regarding the co-evolution of language and the brain.
Collapse
Affiliation(s)
- Ljiljana Progovac
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - Natalia Rakhlin
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - William Angell
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Ryan Liddane
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Lingfei Tang
- Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Noa Ofen
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Klein C, Metz SI, Elmer S, Jäncke L. The interpreter's brain during rest - Hyperconnectivity in the frontal lobe. PLoS One 2018; 13:e0202600. [PMID: 30138477 PMCID: PMC6107212 DOI: 10.1371/journal.pone.0202600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022] Open
Abstract
Language in its highest complexity is a unique human faculty with simultaneous translation being among the most demanding language task involving both linguistic and executive functions. In this context, bilingually grown up individuals as well as simultaneous interpreters (SIs) represent appropriate groups for studying expertise-related neural adaptations in the human brain. The present study was performed to examine if a domain-specific neural network activation pattern, constituted by brain regions involved in speech processing as well as cognitive control mechanisms can be detected during a task-free resting state condition. To investigate this, electroencephalographic (EEG) data were recorded from 16 SIs and 16 age and gender-matched multilingual control subjects. Graph-theoretical network analyses revealed interhemispheric hyperconnectivity between the ventral part of the prefrontal cortex (pars opercularis and pars triangularis) and the dorsolateral prefrontal cortex (DLPFC) in language experts compared to multilingual controls in the alpha frequency range. This finding suggests that the high cognitive demands placed on simultaneous interpreting lead to an increased neural communication between prefrontal brain regions essentially engaged in supporting executive control—a neural fingerprint that is even detectable during rest.
Collapse
Affiliation(s)
- Carina Klein
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Silvana Iris Metz
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Stefan Elmer
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
- International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Dynamic of Healthy Aging, University of Zurich, Zurich, Switzerland
- Department of Special Education, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Rogalsky C, LaCroix AN, Chen KH, Anderson SW, Damasio H, Love T, Hickok G. The Neurobiology of Agrammatic Sentence Comprehension: A Lesion Study. J Cogn Neurosci 2017; 30:234-255. [PMID: 29064339 DOI: 10.1162/jocn_a_01200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of "agrammatic comprehension" in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern-for example, their performance was >80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion-symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.
Collapse
Affiliation(s)
| | | | - Kuan-Hua Chen
- University of Iowa.,University of California, Berkeley
| | | | | | | | | |
Collapse
|
12
|
Matchin W, Hammerly C, Lau E. The role of the IFG and pSTS in syntactic prediction: Evidence from a parametric study of hierarchical structure in fMRI. Cortex 2017; 88:106-123. [DOI: 10.1016/j.cortex.2016.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
13
|
Piñango MM, Finn E, Lacadie C, Constable RT. The Localization of Long-Distance Dependency Components: Integrating the Focal-lesion and Neuroimaging Record. Front Psychol 2016; 7:1434. [PMID: 27746748 PMCID: PMC5043422 DOI: 10.3389/fpsyg.2016.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
In the sentence “The captain who the sailor greeted is tall,” the connection between the relative pronoun and the object position of greeted represents a long-distance dependency (LDD), necessary for the interpretation of “the captain” as the individual being greeted. Whereas the lesion-based record shows preferential involvement of only the left inferior frontal (LIF) cortex, associated with Broca's aphasia, during real-time comprehension of LDDs, the neuroimaging record shows additional involvement of the left posterior superior temporal (LPST) and lower parietal cortices, which are associated with Wernicke's aphasia. We test the hypothesis that this localization incongruence emerges from an interaction of memory and linguistic constraints involved in the real-time implementation of these dependencies and which had not been previously isolated. Capitalizing on a long-standing psycholinguistic understanding of LDDs as the workings of an active filler, we distinguish two linguistically defined mechanisms: GAP-search, triggered by the retrieval of the relative pronoun, and GAP-completion, triggered by the retrieval of the embedded verb. Each mechanism is hypothesized to have distinct memory demands and given their distinct linguistic import, potentially distinct brain correlates. Using fMRI, we isolate the two mechanisms by analyzing their relevant sentential segments as separate events. We manipulate LDD-presence/absence and GAP-search type (direct/indirect) reflecting the absence/presence of intervening islands. Results show a direct GAP-search—LIF cortex correlation that crucially excludes the LPST cortex. Notably, indirect GAP-search recruitment is confined to supplementary-motor and lower-parietal cortex indicating that GAP presence alone is not enough to engage predictive functions in the LIF cortex. Finally, GAP-completion shows recruitment implicating the dorsal pathway including: the supplementary motor cortex, left supramarginal cortex, precuneus, and anterior/dorsal cingulate. Altogether, the results are consistent with previous findings connecting GAP-search, as we define it, to the LIF cortex. They are not consistent with an involvement of the LPST cortex in any of the two mechanisms, and therefore support the view that the LPST cortex is not crucial to LDD implementation. Finally, results support neurocognitive architectures that involve the dorsal pathway in LDD resolution and that distinguish the memory commitments of the LIF cortex as sensitive to specific language-dependent constraints beyond phrase-structure building considerations.
Collapse
Affiliation(s)
- Maria M Piñango
- Language and Brain Lab, Department of Linguistics, Yale UniversityNew Haven, CT, USA; Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale UniversityNew Haven, CT, USA
| | - Emily Finn
- Language and Brain Lab, Department of Linguistics, Yale UniversityNew Haven, CT, USA; Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale UniversityNew Haven, CT, USA
| | - Cheryl Lacadie
- Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale University New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale University New Haven, CT, USA
| |
Collapse
|
14
|
Elmer S. Broca Pars Triangularis Constitutes a "Hub" of the Language-Control Network during Simultaneous Language Translation. Front Hum Neurosci 2016; 10:491. [PMID: 27746729 PMCID: PMC5040713 DOI: 10.3389/fnhum.2016.00491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/15/2016] [Indexed: 12/02/2022] Open
Abstract
Until now, several branches of research have fundamentally contributed to a better understanding of the ramifications of bilingualism, multilingualism, and language expertise on psycholinguistic-, cognitive-, and neural implications. In this context, it is noteworthy to mention that from a cognitive perspective, there is a strong convergence of data pointing to an influence of multilingual speech competence on a variety of cognitive functions, including attention, short-term- and working memory, set shifting, switching, and inhibition. In addition, complementary neuroimaging findings have highlighted a specific set of cortical and subcortical brain regions which fundamentally contribute to administrate cognitive control in the multilingual brain, namely Broca's area, the middle-anterior cingulate cortex, the inferior parietal lobe, and the basal ganglia. However, a disadvantage of focusing on group analyses is that this procedure only enables an approximation of the neural networks shared within a population while at the same time smoothing inter-individual differences. In order to address both commonalities (i.e., within group analyses) and inter-individual variability (i.e., single-subject analyses) in language control mechanisms, here I measured five professional simultaneous interpreters while the participants overtly translated or repeated sentences with a simple subject-verb-object structure. Results demonstrated that pars triangularis was commonly activated across participants during backward translation (i.e., from L2 to L1), whereas the other brain regions of the "control network" showed a strong inter-individual variability during both backward and forward (i.e., from L1 to L2) translation. Thus, I propose that pars triangularis plays a crucial role within the language-control network and behaves as a fundamental processing entity supporting simultaneous language translation.
Collapse
Affiliation(s)
- Stefan Elmer
- Auditory Research Group Zurich, Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland
| |
Collapse
|
15
|
Shimada K, Hirotani M, Yokokawa H, Yoshida H, Makita K, Yamazaki-Murase M, Tanabe HC, Sadato N. Fluency-dependent cortical activation associated with speech production and comprehension in second language learners. Neuroscience 2015; 300:474-92. [PMID: 26026679 DOI: 10.1016/j.neuroscience.2015.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
This functional magnetic resonance imaging (fMRI) study investigated the brain regions underlying language task performance in adult second language (L2) learners. Specifically, we identified brain regions where the level of activation was associated with L2 fluency levels. Thirty Japanese-speaking adults participated in the study. All participants were L2 learners of English and had achieved varying levels of fluency, as determined by a standardized L2 English proficiency test, the Versant English Test (Pearson Education Inc., 2011). When participants performed the oral sentence building task from the production tasks administered, the dorsal part of the left inferior frontal gyrus (dIFG) showed activation patterns that differed depending on the L2 fluency levels: The more fluent the participants were, the more dIFG activation decreased. This decreased activation of the dIFG might reflect the increased automaticity of a syntactic building process. In contrast, when participants performed an oral story comprehension task, the left posterior superior temporal gyrus (pSTG) showed increased activation with higher fluency levels. This suggests that the learners with higher L2 fluency were actively engaged in post-syntactic integration processing supported by the left pSTG. These data imply that L2 fluency predicts neural resource allocation during language comprehension tasks as well as in production tasks. This study sheds light on the neural underpinnings of L2 learning by identifying the brain regions recruited during different language tasks across different modalities (production vs. comprehension).
Collapse
Affiliation(s)
- K Shimada
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Aichi, Japan; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Biomedical Imaging Research Center (BIRC), University of Fukui, Fukui, Japan
| | - M Hirotani
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan; School of Linguistics and Language Studies, and Institute of Cognitive Science, Carleton University, Ottawa, Canada.
| | - H Yokokawa
- School of Languages and Communication, Kobe University, Kobe, Japan
| | - H Yoshida
- Department of English Education, Osaka Kyoiku University, Osaka, Japan
| | - K Makita
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Aichi, Japan
| | - M Yamazaki-Murase
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - H C Tanabe
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Aichi, Japan; Division of Psychology, Department of Social and Human Environment, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - N Sadato
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Aichi, Japan; Biomedical Imaging Research Center (BIRC), University of Fukui, Fukui, Japan
| |
Collapse
|
16
|
Iijima K, Sakai KL. Subliminal enhancement of predictive effects during syntactic processing in the left inferior frontal gyrus: an MEG study. Front Syst Neurosci 2014; 8:217. [PMID: 25404899 PMCID: PMC4217366 DOI: 10.3389/fnsys.2014.00217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022] Open
Abstract
Predictive syntactic processing plays an essential role in language comprehension. In our previous study using Japanese object-verb (OV) sentences, we showed that the left inferior frontal gyrus (IFG) responses to a verb increased at 120-140 ms after the verb onset, indicating predictive effects caused by a preceding object. To further elucidate the automaticity of the predictive effects in the present magnetoencephalography study, we examined whether a subliminally presented verb ("subliminal verb") enhanced the predictive effects on the sentence-final verb ("target verb") unconsciously, i.e., without awareness. By presenting a subliminal verb after the object, enhanced predictive effects on the target verb would be detected in the OV sentences when the transitivity of the target verb matched with that of the subliminal verb ("congruent condition"), because the subliminal verb just after the object could determine the grammaticality of the sentence. For the OV sentences under the congruent condition, we observed significantly increased left IFG responses at 140-160 ms after the target verb onset. In contrast, responses in the precuneus and midcingulate cortex (MCC) were significantly reduced for the OV sentences under the congruent condition at 110-140 and 280-300 ms, respectively. By using partial Granger causality analyses for the OV sentences under the congruent condition, we revealed a bidirectional interaction between the left IFG and MCC at 60-160 ms, as well as a significant influence from the MCC to the precuneus. These results indicate that a top-down influence from the left IFG to the MCC, and then to the precuneus, is critical in syntactic decisions, whereas the MCC shares its task-set information with the left IFG to achieve automatic and predictive processes of syntax.
Collapse
Affiliation(s)
- Kazuki Iijima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-ku, Japan
- CREST, Japan Science and Technology AgencyChiyoda-ku, Japan
- Japan Society for the Promotion of ScienceChiyoda-ku, Japan
| | - Kuniyoshi L. Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-ku, Japan
- CREST, Japan Science and Technology AgencyChiyoda-ku, Japan
| |
Collapse
|
17
|
Matchin W, Sprouse J, Hickok G. A structural distance effect for backward anaphora in Broca's area: an fMRI study. BRAIN AND LANGUAGE 2014; 138:1-11. [PMID: 25261745 PMCID: PMC4252493 DOI: 10.1016/j.bandl.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/18/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
Accounts of the role of Broca's area in sentence comprehension range from specific syntactic operations to domain-general processes. The present study was designed to tease apart these two general accounts by measuring the BOLD response to two syntactically distinct long-distance dependencies that invoke abstractly similar predictive processes: backward anaphora and filler-gap dependencies. Previous research has observed distance effects in Broca's area for filler-gap dependencies, but not canonical anaphora, which has been interpreted in support of a syntactic movement account. However, filler-gap dependencies engage predictive mechanisms, resulting in active search for the gap, while canonical anaphora do not. Backward anaphora correct for this asymmetry as they engage a predictive mechanism that parallels the active search in filler-gap dependencies. The results revealed a distance effect in the pars triangularis of Broca's area for the backward anaphora condition, supporting a prediction-based role for this region rather than one for a particular syntactic operation.
Collapse
Affiliation(s)
- William Matchin
- Department of Cognitive Sciences, University of California, Irvine, United States
| | - Jon Sprouse
- Department of Linguistics, University of Connecticut, United States
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, United States
| |
Collapse
|
18
|
Elmer S, Hänggi J, Jäncke L. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex 2014; 54:179-89. [DOI: 10.1016/j.cortex.2014.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/07/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
19
|
Leiken K, Pylkkänen L. MEG evidence that the LIFG effect of object extraction requires similarity-based interference. LANGUAGE AND COGNITIVE PROCESSES 2014; 29:381-389. [PMID: 24610968 PMCID: PMC3935223 DOI: 10.1080/01690965.2013.863369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 10/29/2013] [Indexed: 06/03/2023]
Abstract
This study addresses a much-debated effect on a much-debated region: the increase of left inferior frontal gyrus (LIFG) activation associated with object-extracted relative clauses. This haemodynamic result is one of the most central and most cited findings in the cognitive neuroscience of syntax and it has robustly contributed to the popular association of Broca's region with syntax. Our study had two goals: (1) to characterise the timing of this classic effect with magnetoencephalography (MEG) and (2) to connect it to psycholinguistic research on the effects of similarity-based interference during sentence processing. Specifically, behavioural studies have shown that object relatives are primarily only costly when the two preverbal noun phrases are parallel in their surface syntax, for example, both consisting of a definite determiner and a noun (e.g. the reporter who the senator attacked), as opposed to employing, for example, a definite noun phrase and a proper name (the reporter who Bill attacked). This finding suggests that the difficulty of object extraction lies not within its syntax but rather in similarity-based interference affecting working memory processes. Although working memory is a prominent hypothesis for the LIFG engagement in object extraction, the haemodynamic literature has routinely employed stimuli involving parallel as opposed to non-parallel syntax. Using written sentences presented word-by-word, we tested whether an LIFG effect of object extraction is obtained with MEG, allowing us to characterise its timing, and whether it reduces or disappears if the two preverbal noun phrases are non-parallel in their surface syntax. Our results show an LIFG increase for object relatives at around 600 ms after verb onset, but only when the preverbal arguments are parallel. These findings are consistent with memory and competition-based explanations of the LIFG effect of object extraction and challenge accounts attributing it to displacement.
Collapse
Affiliation(s)
- Kimberly Leiken
- Department of Linguistics, New York University, New York, NY, USA
| | - Liina Pylkkänen
- Department of Linguistics, New York University, New York, NY, USA
- Department of Psychology, New York University, New York, NY, USA
- NYU Abu Dhabi Institute, New York University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Neural correlates of processing passive sentences. Brain Sci 2013; 3:1198-214. [PMID: 24961525 PMCID: PMC4061884 DOI: 10.3390/brainsci3031198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/16/2022] Open
Abstract
Previous research has shown that comprehension of complex sentences involving wh-movement (e.g., object-relative clauses) elicits activation in the left inferior frontal gyrus (IFG) and left posterior temporal cortex. However, relatively little is known about the neural correlates of processing passive sentences, which differ from other complex sentences in terms of representation (i.e., noun phrase (NP)-movement) and processing (i.e., the time course of syntactic reanalysis). In the present study, 27 adults (14 younger and 13 older) listened to passive and active sentences and performed a sentence-picture verification task using functional Magnetic Resonance Imaging (fMRI). Passive sentences, relative to active sentences, elicited greater activation in bilateral IFG and left temporo-occipital regions. Participant age did not significantly affect patterns of activation. Consistent with previous research, activation in left temporo-occipital cortex likely reflects thematic reanalysis processes, whereas, activation in the left IFG supports processing of complex syntax (i.e., NP-movement). Right IFG activation may reflect syntactic reanalysis processing demands associated with the sentence-picture verification task.
Collapse
|
21
|
Inubushi T, Iijima K, Koizumi M, Sakai KL. Left inferior frontal activations depending on the canonicity determined by the argument structures of ditransitive sentences: an MEG study. PLoS One 2012; 7:e37192. [PMID: 22629366 PMCID: PMC3358340 DOI: 10.1371/journal.pone.0037192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022] Open
Abstract
To elucidate the relationships between syntactic and semantic processes, one interesting question is how syntactic structures are constructed by the argument structure of a verb, where each argument corresponds to a semantic role of each noun phrase (NP). Here we examined the effects of possessivity [sentences with or without a possessor] and canonicity [canonical or noncanonical word orders] using Japanese ditransitive sentences. During a syntactic decision task, the syntactic structure of each sentence would be constructed in an incremental manner based on the predicted argument structure of the ditransitive verb in a verb-final construction. Using magnetoencephalography, we found a significant canonicity effect on the current density in the left inferior frontal gyrus (IFG) at 530-550 ms after the verb onset. This effect was selective to canonical sentences, and significant even when the precedent NP was physically identical. We suggest that the predictive effects associated with syntactic processing became larger for canonical sentences, where the NPs and verb were merged with a minimum structural distance, leading to the left IFG activations. For monotransitive and intransitive verbs, in which structural computation of the sentences was simpler than that of ditransitive sentences, we observed a significant effect selective to noncanonical sentences in the temporoparietal regions during 480-670 ms. This effect probably reflects difficulty in semantic processing of noncanonical sentences. These results demonstrate that the left IFG plays a predictive role in syntactic processing, which depends on the canonicity determined by argument structures, whereas other temporoparietal regions would subserve more semantic aspects of sentence processing.
Collapse
Affiliation(s)
- Tomoo Inubushi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Sanban-cho, Chiyoda-ku, Tokyo, Japan
- Japan Society for the Promotion of Science, Honmachi, Kawaguchi-shi, Saitama, Japan
| | - Kazuki Iijima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Sanban-cho, Chiyoda-ku, Tokyo, Japan
- Japan Society for the Promotion of Science, Honmachi, Kawaguchi-shi, Saitama, Japan
| | - Masatoshi Koizumi
- Department of Linguistics, Tohoku University, Kawauchi, Aoba-ku, Sendai-shi, Miyagi, Japan
| | - Kuniyoshi L. Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Sanban-cho, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|