1
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
2
|
Zhang P, Feng S, Zhang Q, Chen Y, Liu Y, Liu T, Bai X, Yin J. Online chasing action recruits both mirror neuron and mentalizing systems: A pilot fNIRS study. Acta Psychol (Amst) 2024; 248:104363. [PMID: 38905953 DOI: 10.1016/j.actpsy.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Engaging in chasing, where an actor actively pursues a target, is considered a crucial activity for the development of social skills. Previous studies have focused predominantly on understanding the neural correlates of chasing from an observer's perspective, but the neural mechanisms underlying the real-time implementation of chasing action remain poorly understood. To gain deeper insights into this phenomenon, the current study employed functional near-infrared spectroscopy (fNIRS) techniques and a novel interactive game. In this interactive game, participants (N = 29) were tasked to engage in chasing behavior by controlling an on-screen character using a gamepad, with the goal of catching a virtual partner. To specifically examine the brain activations associated with the interactive nature of chasing, we included two additional interactive actions: following action of following the path of a virtual partner and free action of moving without a specific pursuit goal. The results revealed that chasing and following actions elicited activation in a broad and overlapping network of brain regions, including the temporoparietal junction (TPJ), medial prefrontal cortex (mPFC), premotor cortex (PMC), primary somatosensory cortex (SI), and primary motor cortex (M1). Crucially, these regions were found to be modulated by the type of interaction, with greater activation and functional connectivity during the chasing interaction than during the following and free interactions. These findings suggested that both the MNS, encompassing regions such as the PMC, M1 and SI, and the mentalizing system (MS), involving the TPJ and mPFC, contribute to the execution of online chasing actions. Thus, the present study represents an initial step toward future investigations into the roles of MNS and MS in real-time chasing interactions.
Collapse
Affiliation(s)
- Peng Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Shuyuan Feng
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Qihan Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yixin Chen
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yu Liu
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai, China
| | - Xuejun Bai
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Jun Yin
- Department of Psychology, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Bolt NK, Loehr JD. Motor-related cortical oscillations distinguish one's own from a partner's contributions to a joint action. Biol Psychol 2024; 190:108804. [PMID: 38670429 DOI: 10.1016/j.biopsycho.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The ability to distinguish between one's own and others' actions is a requirement for successful joint action. Such a distinction might be supported by dissociable motor activity underlying each partner's individual contributions to the joint action. However, little research has directly compared motor activity associated with one's own vs. others' actions during joint action. The current study investigated whether motor-related cortical oscillations distinguish between self- and partner-produced actions when partners take turns producing taps to meet a joint timing goal. Across two experiments, the degree of beta suppression differentiated one's own from a partner's actions, with more suppression occurring during one's own actions than during a partner's actions. Self-partner differences in mu suppression were also evident, particularly when partners produced actions in succession. Increased beta suppression was also observed during partners' actions when they were followed by one's own actions, suggesting that the coordination demands imposed by the joint action could affect the pattern of beta reactivity during a turn-taking joint action. Together, these findings demonstrate that dynamic patterns of motor activity underpin successful joint action and that periods of distinct motor activity are associated with one's own contributions to a joint action.
Collapse
Affiliation(s)
- Nicole K Bolt
- Department of Psychology and Health Studies, University of Saskatchewan, Canada.
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, Canada
| |
Collapse
|
4
|
Bolt NK, Loehr JD. The auditory P2 differentiates self- from partner-produced sounds during joint action: Contributions of self-specific attenuation and temporal orienting of attention. Neuropsychologia 2023; 182:108526. [PMID: 36870472 DOI: 10.1016/j.neuropsychologia.2023.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Sensory attenuation of the auditory P2 event-related potential (ERP) has been shown to differentiate the sensory consequences of one's own from others' action in joint action contexts. However, recent evidence suggests that when people coordinate joint actions over time, temporal orienting of attention might simultaneously contribute to enhancing the auditory P2. The current study employed a joint tapping task in which partners produced tone sequences together to examine whether temporal orienting influences auditory ERP amplitudes during the time window of self-other differentiation. Our findings demonstrate that the combined requirements of coordinating with a partner toward a joint goal and immediately adjusting to the partner's tone timing enhance P2 amplitudes elicited by the partner's tone onsets. Furthermore, our findings replicate prior evidence for self-specific sensory attenuation of the auditory P2 in joint action, and additionally demonstrate that it occurs regardless of the coordination requirements between partners. Together, these findings provide evidence that temporal orienting and sensory attenuation both modulate the auditory P2 during joint action and suggest that both processes play a role in facilitating precise interpersonal coordination between partners.
Collapse
Affiliation(s)
- Nicole K Bolt
- Department of Psychology and Health Studies, University of Saskatchewan, 9 Campus Drive, Saskatoon, Saskatchewan, S7N 5A5, Canada.
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, 9 Campus Drive, Saskatoon, Saskatchewan, S7N 5A5, Canada.
| |
Collapse
|
5
|
Christensen J, Slavik L, Nicol JJ, Loehr JD. Alpha oscillations related to self-other integration and distinction during live orchestral performance: A naturalistic case study. PSYCHOLOGY OF MUSIC 2023; 51:295-315. [PMID: 36532616 PMCID: PMC9751440 DOI: 10.1177/03057356221091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ensemble music performance requires musicians to achieve precise interpersonal coordination while maintaining autonomous control over their own actions. To do so, musicians dynamically shift between integrating other performers' actions into their own action plans and maintaining a distinction between their own and others' actions. Research in laboratory settings has shown that this dynamic process of self-other integration and distinction is indexed by sensorimotor alpha oscillations. The purpose of the current descriptive case study was to examine oscillations related to self-other integration and distinction in a naturalistic performance context. We measured alpha activity from four violinists during a concert hall performance of a 60-musician orchestra. We selected a musical piece from the orchestra's repertoire and, before analyzing alpha activity, performed a score analysis to divide the piece into sections that were expected to strongly promote self-other integration and distinction. In line with previous laboratory findings, performers showed suppressed and enhanced alpha activity during musical sections that promoted self-other integration and distinction, respectively. The current study thus provides preliminary evidence that findings from carefully controlled laboratory experiments generalize to complex real-world performance. Its findings also suggest directions for future research and potential applications of interest to musicians, music educators, and music therapists.
Collapse
Affiliation(s)
| | - Lauren Slavik
- Department of Psychology, University of Saskatchewan, Saskatoon, Canada
| | - Jennifer J Nicol
- Department of Educational Psychology and Special Education, University of Saskatchewan, Saskatoon, Canada
| | - Janeen D Loehr
- Department of Psychology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Bolt NK, Loehr JD. The motor-related brain activity that supports joint action: A review. Acta Psychol (Amst) 2021; 212:103218. [PMID: 33307297 DOI: 10.1016/j.actpsy.2020.103218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Recent years have seen a rapid increase in research investigating the motor-related brain activity that supports joint action. This research has employed a variety of joint action tasks and an array of neuroimaging techniques, including fMRI, fNIRS, EEG, and TMS. In this review, we provide an overview of this research to delineate what is known about the motor-related brain activity that contributes to joint action and to highlight key questions for future research. Taken together, the surveyed research supports three major conclusions. First, the mere presence of a joint action context is sufficient to modulate motor activity elicited by observing others' actions. Second, joint action is supported by dissociable motor activity associated with a person's own actions, their partner's actions, and the joint action, and by between-brain coupling of motor-related oscillatory activity. Third, the structure of a joint action modulates the motor activity involved: Unique motor activity is associated with performing joint actions comprised of complementary actions and with holding the roles of leader and follower within a joint action. We conclude the review by highlighting overarching themes and key questions for future research.
Collapse
|
7
|
Evidence for we-representations during joint action planning. Neuropsychologia 2019; 131:73-83. [PMID: 31153967 PMCID: PMC6667733 DOI: 10.1016/j.neuropsychologia.2019.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 11/21/2022]
Abstract
Do people engaged in joint action form action plans that specify joint outcomes at the group level? EEG was recorded from pairs of participants who performed coordinated actions that could result in different postural configurations. To isolate individual and joint action planning processes, a pre-cue specified in advance the individual actions and/or the joint configuration. Participants had 1200 ms to prepare their actions. Then a Go cue specified all action parameters and participants performed a synchronized action as quickly as possible. Action onsets were shorter when the pre-cue specified the joint configuration, regardless of whether individual action was also specified. EEG analyses showed that specifying joint action parameters in advance reduced ambiguity in a structured joint action plan (reflected in the decrease of the amplitude of the P600) and helped with representing action goals and interpersonal coordination patterns in sensorimotor brain areas (reflected in increased alpha/mu suppression and CNV amplitudes). These results provide clear evidence that joint action is driven not only by action plans that specify individual contributions, but also by action plans that specify joint action outcomes at the group level. People form individual and group-level representations during joint action planning. Information about joint configuration benefits task performance. Information about joint configuration reduces ambiguity in joint task representation. Evidence for predictive “we-representations” in the sensorimotor system. “We-representations” may be formed independently of “I” and “You” representations.
Collapse
|
8
|
Gallotti M, Fairhurst M, Frith C. Alignment in social interactions. Conscious Cogn 2017; 48:253-261. [DOI: 10.1016/j.concog.2016.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
9
|
Kant V. Extending Cognitive Work Analysis for embodiment: ecological psychology, activity theory and Worker Competency Analysis. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2016. [DOI: 10.1080/1463922x.2016.1243740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vivek Kant
- Institute of Catastrophe Research Management, Nanyang Technological University (NTU), Singapore
- Division of Sociology, School of Humanities and Social Sciences, Nanyang Technological University (NTU), Singapore
- Future Resilient Systems, Singapore-ETH Centre, Singapore
| |
Collapse
|
10
|
Constable MD, Pratt J, Gozli DG, Welsh TN. Do you see what I see? Co-actor posture modulates visual processing in joint tasks. VISUAL COGNITION 2015. [DOI: 10.1080/13506285.2015.1078426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Reddy V, Uithol S. Engagement: Looking beyond the mirror to understand action understanding. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2015; 34:101-14. [PMID: 26234724 DOI: 10.1111/bjdp.12106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/26/2015] [Indexed: 11/27/2022]
Abstract
In this paper, we argue that the current focus on mirroring as the route to explaining the development of action understanding is misleading and problematic. It facilitates a fundamentally spectatorial stance, ignoring engagement and dialogue; it focuses on similarity between self and other and neglects difference; and it succumbs to the static terminology of mechanism rather than a dynamic language of process. Contrary to this view, dialogic exchanges are evident from the start of life, revealing infants' ability to engage with and respond appropriately to actions that are outside their own motor repertoire. We suggest that engagement rather than mirroring better accounts for many current findings in action understanding. The neurological evidence to date shows that action perception involves a process of continuous synchronization and change, suggesting that it might be more fruitful for research and theory to look beyond mirroring and instead adopt dynamic processual explanations of action understanding within interaction.
Collapse
Affiliation(s)
| | - Sebo Uithol
- Bernstein Centre for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany.,Department of Neuroscience, University of Parma, Italy
| |
Collapse
|
12
|
Modulation of Rolandic Beta-Band Oscillations during Motor Simulation of Joint Actions. PLoS One 2015; 10:e0131655. [PMID: 26151634 PMCID: PMC4494815 DOI: 10.1371/journal.pone.0131655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
Successful joint actions require precise temporal and spatial coordination between individuals who aim to achieve a common goal. A growing number of behavioral data suggest that to efficiently couple and coordinate a joint task, the actors have to represent both own and the partner’s actions. However it is unclear how the motor system is specifically recruited for joint actions. To find out how the goal and the presence of the partner’s hand can impact the motor activity during joint action, we assessed the functional state of 16 participants’ motor cortex during observation and associated motor imagery of joint actions, individual actions, and non-goal-directed actions performed with either 1 or 2 hands. As an indicator of the functional state of the motor cortex, we used the reactivity of the rolandic magnetoencephalographic (MEG) beta rhythm following median-nerve stimulation. Motor imagery combined with action observation was associated with activation of the observer’s motor cortex, mainly in the hemisphere contralateral to the viewed (and at the same time imagined) hand actions. The motor-cortex involvement was enhanced when the goal of the actions was visible but also, in the ipsilateral hemisphere, when the partner’s hand was visible in the display. During joint action, the partner’s action, in addition to the participant’s own action, thus seems to be represented in the motor cortex so that it can be triggered by the mere presence of an acting hand in the peripersonal space.
Collapse
|
13
|
Drew AR, Quandt LC, Marshall PJ. Visual influences on sensorimotor EEG responses during observation of hand actions. Brain Res 2015; 1597:119-28. [DOI: 10.1016/j.brainres.2014.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 11/28/2022]
|
14
|
Ménoret M, Varnet L, Fargier R, Cheylus A, Curie A, des Portes V, Nazir TA, Paulignan Y. Neural correlates of non-verbal social interactions: a dual-EEG study. Neuropsychologia 2013; 55:85-97. [PMID: 24157538 DOI: 10.1016/j.neuropsychologia.2013.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/21/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Abstract
Successful non-verbal social interaction between human beings requires dynamic and efficient encoding of others' gestures. Our study aimed at identifying neural markers of social interaction and goal variations in a non-verbal task. For this, we recorded simultaneously the electroencephalogram from two participants (dual-EEG), an actor and an observer, and their arm/hand kinematics in a real face-to-face paradigm. The observer watched "biological actions" performed by the human actor and "non-biological actions" performed by a robot. All actions occurred within an interactive or non-interactive context depending on whether the observer had to perform a complementary action or not (e.g., the actor presents a saucer and the observer either places the corresponding cup or does nothing). We analysed the EEG signals of both participants (i.e., beta (~20 Hz) oscillations as an index of cortical motor activity and motor related potentials (MRPs)). We identified markers of social interactions by synchronising EEG to the onset of the actor's movement. Movement kinematics did not differ in the two context conditions and the MRPs of the actor were similar in the two conditions. For the observer, however, an observation-related MRP was measured in all conditions but was more negative in the interactive context over fronto-central electrodes. Moreover, this feature was specific to biological actions. Concurrently, the suppression of beta oscillations was observed in the actor's EEG and the observer's EEG rapidly after the onset of the actor's movement. Critically, this suppression was stronger in the interactive than in the non-interactive context despite the fact that movement kinematics did not differ in the two context conditions. For the observer, this modulation was observed independently of whether the actor was a human or a robot. Our results suggest that acting in a social context induced analogous modulations of motor and sensorimotor regions in observer and actor. Sharing a common goal during an interaction seems thus to evoke a common representation of the global action that includes both actor and observer movements.
Collapse
Affiliation(s)
- Mathilde Ménoret
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France.
| | - Léo Varnet
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre, Brain Dynamics and Cognition Team, Lyon F-69500, France
| | - Raphaël Fargier
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France
| | - Anne Cheylus
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France
| | - Aurore Curie
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France; Hospices Civils de Lyon, Service de Neuropédiatrie, HFME, 69677 Bron Cedex, France
| | - Vincent des Portes
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France; Hospices Civils de Lyon, Service de Neuropédiatrie, HFME, 69677 Bron Cedex, France
| | - Tatjana A Nazir
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France
| | - Yves Paulignan
- Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Institut des Sciences Cognitives, CNRS/UCBL, 67 Bd Pinel, 69675 Bron Cedex, France
| |
Collapse
|