1
|
Liu S, Liu X. Context influence on speech perception: evidence for acoustic-level mechanism across the voice onset time continuum. Neuroimage 2025; 310:121140. [PMID: 40089219 DOI: 10.1016/j.neuroimage.2025.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Contextual information plays a significant role in shaping our perception of speech, yet it remains uncertain at which level of processing such information integrates with acoustic cues. A key area of debate is whether top-down information influences acoustic encoding within the lower levels of the speech-processing hierarchy. This study employed a machine learning algorithm to decode the voice onset time (VOT) of speech and investigated how the gender of the speaker of a precursor sentence impacted subsequent speech perception. Using EEG recordings, we examined neural responses to a VOT continuum following male and female voices. Our results reveal that a linear representation of the VOT continuum emerged at an early EEG time window and that gender-based contextual cues modulated speech perception at this stage. Notably, since context information was not involved in the decoding procedure itself, we conclude that this modulation reflected the true effects of context on the perception of VOT. Moreover, the contextual influence extended across the entire VOT continuum, not just at specific sounds, suggesting a broad and consistent modulation of speech perception by gender-based context. These findings support the idea of a general acoustic-level mechanism through which contextual information influences the early stage of speech processing, contributing to ongoing debates about the interaction between top-down and bottom-up processes in speech perception.
Collapse
Affiliation(s)
- Shun Liu
- Department of Education, Hunan First Normal University, Changsha, China; Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Xiqin Liu
- School of Foreign Languages, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex. Neuroimage 2022; 249:118879. [PMID: 34999204 PMCID: PMC8883111 DOI: 10.1016/j.neuroimage.2022.118879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
We recorded neural responses in human participants to three types of pitch-evoking regular stimuli at rates below and above the lower limit of pitch using magnetoencephalography (MEG). These bandpass filtered (1–4 kHz) stimuli were harmonic complex tones (HC), click trains (CT), and regular interval noise (RIN). Trials consisted of noise-regular-noise (NRN) or regular-noise-regular (RNR) segments in which the repetition rate (or fundamental frequency F0) was either above (250 Hz) or below (20 Hz) the lower limit of pitch. Neural activation was estimated and compared at the senor and source levels. The pitch-relevant regular stimuli (F0 = 250 Hz) were all associated with marked evoked responses at around 140 ms after noise-to-regular transitions at both sensor and source levels. In particular, greater evoked responses to pitch-relevant stimuli than pitch-irrelevant stimuli (F0 = 20 Hz) were localized along the Heschl's sulcus around 140 ms. The regularity-onset responses for RIN were much weaker than for the other types of regular stimuli (HC, CT). This effect was localized over planum temporale, planum polare, and lateral Heschl's gyrus. Importantly, the effect of pitch did not interact with the stimulus type. That is, we did not find evidence to support different responses for different types of regular stimuli from the spatiotemporal cluster of the pitch effect (∼140 ms). The current data demonstrate cortical sensitivity to temporal regularity relevant to pitch that is consistently present across different pitch-relevant stimuli in the Heschl's sulcus between Heschl's gyrus and planum temporale, both of which have been identified as a “pitch center” based on different modalities.
Collapse
|
3
|
Krishnan A, Suresh CH, Gandour JT. Cortical hemisphere preference and brainstem ear asymmetry reflect experience-dependent functional modulation of pitch. BRAIN AND LANGUAGE 2021; 221:104995. [PMID: 34303110 PMCID: PMC8559596 DOI: 10.1016/j.bandl.2021.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Temporal attributes of pitch processing at cortical and subcortical levels are differentially weighted and well-coordinated. The question is whether language experience induces functional modulation of hemispheric preference complemented by brainstem ear symmetry for pitch processing. Brainstem frequency-following and cortical pitch responses were recorded concurrently from Mandarin and English participants. A Mandarin syllable with a rising pitch contour was presented to both ears with monaural stimulation. At the cortical level, left ear stimulation in the Chinese group revealed an experience-dependent response for pitch processing in the right hemisphere, consistent with a functionalaccount. The English group revealed a contralateral hemisphere preference consistent with a structuralaccount. At the brainstem level, Chinese participants showed a functional leftward ear asymmetry, whereas English were consistent with a structural account. Overall, language experience modulates both cortical hemispheric preference and brainstem ear asymmetry in a complementary manner to optimize processing of temporal attributes of pitch.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA.
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA; Department of Communication Disorders, California State, University, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Ortega-Llebaria M, Wu Z. Chinese-English Speakers' Perception of Pitch in Their Non-Tonal Language: Reinterpreting English as a Tonal-Like Language. LANGUAGE AND SPEECH 2021; 64:467-487. [PMID: 31898931 DOI: 10.1177/0023830919894606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Changing the F0-contour of English words does not change their lexical meaning. However, it changes the meaning in tonal languages such as Mandarin. Given this important difference and knowing that words in the two languages of a bilingual lexicon interact, the question arises as to how Mandarin-English speakers process pitch in their bilingual lexicon. The few studies that addressed this question showed that Mandarin-English speakers did not perceive pitch in English words as native English speakers did. These studies, however, used English words as stimuli failing to examine nonwords and Mandarin words. Consequently, possible pre-lexical effects and L1 transfer were not ruled out. The present study fills this gap by examining pitch perception in Mandarin and English words and nonwords by Mandarin-English speakers and a group of native English controls. Results showed the tonal experience of Chinese-English speakers modulated their perception of pitch in their non-tonal language at both pre-lexical and lexical levels. In comparison to native English controls, tonal speakers were more sensitive to the acoustic salience of F0-contours in the pre-lexical processing due to top-down feedback. At the lexical level, Mandarin-English speakers organized words in their two languages according to similarity criteria based on both F0 and segmental information, whereas only the segmental information was relevant to the control group. These results in perception together with consistently reported production patterns in previous literature suggest that Mandarin-English speakers process pitch in English as if it was a one-tone language.
Collapse
|
5
|
Combination of absolute pitch and tone language experience enhances lexical tone perception. Sci Rep 2021; 11:1485. [PMID: 33452284 PMCID: PMC7811026 DOI: 10.1038/s41598-020-80260-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Absolute pitch (AP), a unique ability to name or produce pitch without any reference, is known to be influenced by genetic and cultural factors. AP and tone language experience are both known to promote lexical tone perception. However, the effects of the combination of AP and tone language experience on lexical tone perception are currently not known. In the current study, using behavioral (Categorical Perception) and electrophysiological (Frequency Following Response) measures, we investigated the effect of the combination of AP and tone language experience on lexical tone perception. We found that the Cantonese speakers with AP outperformed the Cantonese speakers without AP on Categorical Perception and Frequency Following Responses of lexical tones, suggesting an additive effect due to the combination of AP and tone language experience. These findings suggest a role of basic sensory pre-attentive auditory processes towards pitch encoding in AP. Further, these findings imply a common mechanism underlying pitch encoding in AP and tone language perception.
Collapse
|
6
|
Andermann M, Günther M, Patterson RD, Rupp A. Early cortical processing of pitch height and the role of adaptation and musicality. Neuroimage 2020; 225:117501. [PMID: 33169697 DOI: 10.1016/j.neuroimage.2020.117501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pitch is an important perceptual feature; however, it is poorly understood how its cortical correlates are shaped by absolute vs relative fundamental frequency (f0), and by neural adaptation. In this study, we assessed transient and sustained auditory evoked fields (AEFs) at the onset, progression, and offset of short pitch height sequences, taking into account the listener's musicality. We show that neuromagnetic activity reflects absolute f0 at pitch onset and offset, and relative f0 at transitions within pitch sequences; further, sequences with fixed f0 lead to larger response suppression than sequences with variable f0 contour, and to enhanced offset activity. Musical listeners exhibit stronger f0-related AEFs and larger differences between their responses to fixed vs variable sequences, both within sequences and at pitch offset. The results resemble prominent psychoacoustic phenomena in the perception of pitch contours; moreover, they suggest a strong influence of adaptive mechanisms on cortical pitch processing which, in turn, might be modulated by a listener's musical expertise.
Collapse
Affiliation(s)
- Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Melanie Günther
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Roy D Patterson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Andermann M, Patterson RD, Rupp A. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality. J Neurophysiol 2020; 123:1320-1331. [DOI: 10.1152/jn.00876.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In recent years, electroencephalography and magnetoencephalography (MEG) have both been used to investigate the response in human auditory cortex to musical sounds that are perceived as consonant or dissonant. These studies have typically focused on the transient components of the physiological activity at sound onset, specifically, the N1 wave of the auditory evoked potential and the auditory evoked field, respectively. Unfortunately, the morphology of the N1 wave is confounded by the prominent neural response to energy onset at stimulus onset. It is also the case that the perception of pitch is not limited to sound onset; the perception lasts as long as the note producing it. This suggests that consonance studies should also consider the sustained activity that appears after the transient components die away. The current MEG study shows how energy-balanced sounds can focus the response waves on the consonance-dissonance distinction rather than energy changes and how source modeling techniques can be used to measure the sustained field associated with extended consonant and dissonant sounds. The study shows that musical dyads evoke distinct transient and sustained neuromagnetic responses in auditory cortex. The form of the response depends on both whether the dyads are consonant or dissonant and whether the listeners are musical or nonmusical. The results also show that auditory cortex requires more time for the early transient processing of dissonant dyads than it does for consonant dyads and that the continuous representation of temporal regularity in auditory cortex might be modulated by processes beyond auditory cortex. NEW & NOTEWORTHY We report a magnetoencephalography (MEG) study on transient and sustained cortical consonance processing. Stimuli were long-duration, energy-balanced, musical dyads that were either consonant or dissonant. Spatiotemporal source analysis revealed specific transient and sustained neuromagnetic activity in response to the dyads; in particular, the morphology of the responses was shaped by the dyad’s consonance and the listener’s musicality. Our results also suggest that the sustained representation of stimulus regularity might be modulated by processes beyond auditory cortex.
Collapse
Affiliation(s)
- Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roy D. Patterson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Peng F, McKay CM, Mao D, Hou W, Innes-Brown H. Cortical Pitch Response Components Correlate with the Pitch Salience of Resolved and Unresolved components of Mandarin Tones .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4682-4685. [PMID: 31946907 DOI: 10.1109/embc.2019.8856565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cortical pitch responses (CPRs) are generated at the initiation of pitch-bearing sounds. CPR components have been shown to reflect the pitch salience of iterated rippled noise with different temporal periodicity. However, it is unclear whether features of the CPR correlate with the pitch salience of resolved and unresolved harmonics of speech when the temporal periodicity is identical, and whether CPRs could be a neural index for auditory cortical pitch processing. In this study, CPRs were recorded to two speech sounds: a set including only resolved harmonics and a set including only unresolved harmonics. Speech-shaped noise preceding and following the speech was used to temporally discriminate the neural activity coding the onset of acoustic energy from the onset of time-varying pitch. Analysis of CPR peak latency and peak amplitude (Na) showed that the peak latency to speech sounds with only resolved harmonics was significantly shorter than for sounds with unresolved harmonics (p = 0.01), and that peak amplitude to sounds with only resolved harmonics was significantly higher than for sounds with unresolved harmonics (p <; 0.001). Further, the CPR peak phase locking value in response to sounds with only resolved harmonics was significantly higher than to sounds with only unresolved harmonics (p <; 0.001). Our findings suggest that the CPR changes with pitch salience and that CPR is a potentially useful indicator of auditory cortical pitch processing.
Collapse
|
9
|
Krishnan A, Suresh CH, Gandour JT. Tone language experience-dependent advantage in pitch representation in brainstem and auditory cortex is maintained under reverberation. Hear Res 2019; 377:61-71. [PMID: 30921642 DOI: 10.1016/j.heares.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Long-term language and music experience enhances neural representation of temporal attributes of pitch in the brainstem and auditory cortex in favorable listening conditions. Herein we examine whether brainstem and cortical pitch mechanisms-shaped by long-term language experience-maintain this advantage in the presence of reverberation-induced degradation in pitch representation. Brainstem frequency following responses (FFR) and cortical pitch responses (CPR) were recorded concurrently from Chinese and English-speaking natives, using a Mandarin word exhibiting a high rising pitch (/yi2/). Stimuli were presented diotically in quiet (Dry), and in the presence of Slight, Mild, and Moderate reverberation conditions. Regardless of language group, the amplitude of both brainstem FFR (F0) and cortical CPR (NaPb) responses decreased with increases in reverberation. Response amplitude for Chinese, however, was larger than English in all reverberant conditions. The Chinese group also exhibited a robust rightward asymmetry at temporal electrode sites (T8 > T7) across stimulus conditions. Regardless of language group, direct comparison of brainstem and cortical responses revealed similar magnitude of change in response amplitude with increasing reverberation. These findings suggest that experience-dependent brainstem and cortical pitch mechanisms provide an enhanced and stable neural representation of pitch-relevant information that is maintained even in the presence of reverberation. Relatively greater degradative effects of reverberation on brainstem (FFR) compared to cortical (NaPb) responses suggest relatively stronger top-down influences on CPRs.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Chandan H Suresh
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Jackson T Gandour
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| |
Collapse
|
10
|
Suresh CH, Krishnan A, Gandour JT. Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios. Hear Res 2017; 355:42-53. [PMID: 28927640 DOI: 10.1016/j.heares.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/27/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Long-term experience enhances neural representation of temporal attributes of pitch in the brainstem and auditory cortex in favorable listening conditions. Herein we examine whether cortical pitch mechanisms shaped by language experience are more resilient to degradation in background noise, and exhibit greater binaural release from masking (BRM). Cortical pitch responses (CPR) were recorded from Mandarin- and English-speaking natives using a Mandarin word exhibiting a high rising pitch (/yi2/). Stimuli were presented diotically in Quiet, and in noise at +5, and 0 dB SNR. CPRs were also recorded in binaural conditions, SONO (where signal and noise were in phase at both ears); or S0Nπ (where signal was in phase and noise 180° out of phase at each ear), using 0 dB SNR. At Fz, both groups showed increase in CPR peak latency and decrease in amplitude with increasing noise level. A language-dependent enhancement of Na-Pb amplitude (Chinese > English) was restricted to Quiet and +5 dB SNR conditions. At T7/T8 electrode sites, Chinese natives exhibited a rightward asymmetry for both CPR components. A language-dependent effect (Chinese > English) was restricted to T8. Regarding BRM, both CPR components showed greater response amplitude for the S0Nπ condition compared to S0N0 across groups. Rightward asymmetry for BRM in the Chinese group indicates experience-dependent recruitment of right auditory cortex. Restriction of the advantage in pitch representation to the quiet and +5 SNR conditions, and the absence of group differences in the binaural release from masking, suggest that language experience affords limited advantage in the neural representation of pitch-relevant information in the auditory cortex under adverse listening conditions.
Collapse
Affiliation(s)
- Chandan H Suresh
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN, 47907-2122, USA.
| | - Ananthanarayan Krishnan
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN, 47907-2122, USA.
| | - Jackson T Gandour
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN, 47907-2122, USA.
| |
Collapse
|
11
|
Krishnan A, Suresh CH, Gandour JT. Differential sensitivity to changes in pitch acceleration in the auditory brainstem and cortex. BRAIN AND LANGUAGE 2017; 169:22-27. [PMID: 28237533 PMCID: PMC5425296 DOI: 10.1016/j.bandl.2017.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The cortical pitch-specific response (CPR) is differentially sensitive to pitch contours varying in rate of acceleration-time-variant Mandarin Tone2 (T2) versus constant, linear rising ramp (Linear)-as a function of language experience (Krishnan, Gandour, & Suresh, 2014). CPR and brainstem frequency following response (FFR) data were recorded concurrently from native Mandarin listeners using the same stimuli. Results showed that T2 elicited larger responses than Linear at both cortical and brainstem levels (CPR: Na-Pb, Pb-Nb; FFR). However, Pb-Nb exhibited a larger difference in magnitude between T2 and Linear than either Na-Pb or FFR. This finding highlights differential weighting of brain responses elicited by a specific temporal attribute of pitch. Consistent with the notion of a distributed, integrated hierarchical pitch processing network, temporal attributes of pitch are differentially weighted by subcortical and cortical level processing.
Collapse
Affiliation(s)
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| |
Collapse
|
12
|
Wu Z, Ortega-Llebaria M. Pitch shape modulates the time course of tone vs pitch-accent identification in Mandarin Chinese. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:2263. [PMID: 28372090 DOI: 10.1121/1.4979052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In Mandarin Chinese pitch is used to express both lexical meanings via tones and sentence-level meanings via pitch-accents raising the question of which information is processed first. While research with meaningful sentence materials suggested a general processing advantage of tone over pitch-accents, research on pure tones and nonce speech in pre-attentive processing found that the f0-shape led to timing and site processing differences. The current study reconciles these results by exploring whether the tone advantage found in meaningful speech materials is modulated by the f0-shape by establishing via a gating paradigm the relative timing of tone and pitch-accent identification. Target words containing static (T1) and dynamic (T2, T4) tones were embedded into meaningful sentences and were divided into 50 ms gates which were added incrementally either from the left- or right-edge of the target word. Results showed that dynamic targets had either a tone or pitch-accent advantage contingent on the direction of gate processing. In contrast, for static T1 targets, tone and pitch-accent were identified simultaneously regardless of the direction of gate processing. Altogether, these results indicate that the f0-shape, as defined by pitch dimensions of f0 and pitch range, mediates the timing of tone and pitch-accent identification in meaningful speech supporting highly interactive models of speech perception.
Collapse
Affiliation(s)
- Zhaohong Wu
- Department of Linguistics, University of Pittsburgh, 2816 Cathedral of Learning, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Marta Ortega-Llebaria
- Department of Linguistics, University of Pittsburgh, 2816 Cathedral of Learning, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
13
|
Krishnan A, Gandour JT, Xu Y, Suresh CH. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours. JOURNAL OF NEUROLINGUISTICS 2017; 41:38-49. [PMID: 28713201 PMCID: PMC5507601 DOI: 10.1016/j.jneuroling.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na-Pb and Pb-Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners' amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na-Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb-Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point.
Collapse
Affiliation(s)
| | - Jackson T. Gandour
- Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN USA
| | - Yi Xu
- Department of Speech, Hearing and Phonetic Sciences, University College London, UK
| | - Chandan H. Suresh
- Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
14
|
Krishnan A, Suresh CH, Gandour JT. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex. Neuroscience 2017; 346:52-63. [PMID: 28108254 DOI: 10.1016/j.neuroscience.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/09/2016] [Accepted: 01/08/2017] [Indexed: 11/24/2022]
Abstract
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Chandan H Suresh
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Jackson T Gandour
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| |
Collapse
|
15
|
Krishnan A, Gandour JT, Suresh CH. Language-experience plasticity in neural representation of changes in pitch salience. Brain Res 2016; 1637:102-117. [PMID: 26903418 DOI: 10.1016/j.brainres.2016.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
Abstract
Neural representation of pitch-relevant information at the brainstem and cortical levels of processing is influenced by language experience. A well-known attribute of pitch is its salience. Brainstem frequency following responses and cortical pitch specific responses, recorded concurrently, were elicited by a pitch salience continuum spanning weak to strong pitch of a dynamic, iterated rippled noise pitch contour-homolog of a Mandarin tone. Our aims were to assess how language experience (Chinese, English) affects i) enhancement of neural activity associated with pitch salience at brainstem and cortical levels, ii) the presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude along the pitch salience continuum. Peak latency (Fz: Na, Pb, and Nb) was shorter in the Chinese than the English group across the continuum. Peak-to-peak amplitude (Fz: Na-Pb, Pb-Nb) of the Chinese group grew larger with increasing pitch salience, but an experience-dependent advantage was limited to the Na-Pb component. At temporal sites (T7/T8), the larger amplitude of the Chinese group across the continuum was both limited to the Na-Pb component and the right temporal site. At the brainstem level, F0 magnitude gets larger as you increase pitch salience, and it too reveals Chinese superiority. A direct comparison of cortical and brainstem responses for the Chinese group reveals different patterns of relative changes in magnitude along the pitch salience continuum. Such differences may point to a transformation in pitch processing at the cortical level presumably mediated by local sensory and/or extrasensory influence overlaid on the brainstem output.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| |
Collapse
|
16
|
Bidelman GM. Sensitivity of the cortical pitch onset response to height, time-variance, and directionality of dynamic pitch. Neurosci Lett 2015. [DOI: 10.1016/j.neulet.2015.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Krishnan A, Gandour JT, Suresh CH. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range. Neuroscience 2015; 303:433-45. [PMID: 26166727 DOI: 10.1016/j.neuroscience.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
Abstract
The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one's native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher order, extrasensory processes beyond the sensory memory trace.
Collapse
Affiliation(s)
- A Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| | - J T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| | - C H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| |
Collapse
|
18
|
Krishnan A, Gandour JT, Ananthakrishnan S, Vijayaraghavan V. Language experience enhances early cortical pitch-dependent responses. JOURNAL OF NEUROLINGUISTICS 2015; 33:128-148. [PMID: 25506127 PMCID: PMC4261237 DOI: 10.1016/j.jneuroling.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch.
Collapse
|
19
|
Krishnan A, Gandour JT. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE. ACOUSTICS AUSTRALIA 2014; 42:166-178. [PMID: 25838636 PMCID: PMC4380086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jackson T. Gandour
- Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Krishnan A, Gandour JT, Suresh CH. Cortical pitch response components show differential sensitivity to native and nonnative pitch contours. BRAIN AND LANGUAGE 2014; 138:51-60. [PMID: 25306506 PMCID: PMC4335674 DOI: 10.1016/j.bandl.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study is to evaluate how nonspeech pitch contours of varying shape influence latency and amplitude of cortical pitch-specific response (CPR) components differentially as a function of language experience. Stimuli included time-varying, high rising Mandarin Tone 2 (T2) and linear rising ramp (Linear), and steady-state (Flat). Both the latency and magnitude of CPR components were differentially modulated by (i) the overall trajectory of pitch contours (time-varying vs. steady-state), (ii) their pitch acceleration rates (changing vs. constant), and (iii) their linguistic status (lexical vs. non-lexical). T2 elicited larger amplitude than Linear in both language groups, but size of the effect was larger in Chinese than English. The magnitude of CPR components elicited by T2 were larger for Chinese than English at the right temporal electrode site. Using the CPR, we provide evidence in support of experience-dependent modulation of dynamic pitch contours at an early stage of sensory processing.
Collapse
Affiliation(s)
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, USA.
| |
Collapse
|