1
|
Zlomuzica A, Preusser F, Roberts S, Woud ML, Lester KJ, Dere E, Eley TC, Margraf J. The role of KIBRA in reconstructive episodic memory. Mol Med 2018; 24:7. [PMID: 30134813 PMCID: PMC6016870 DOI: 10.1186/s10020-018-0007-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/13/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In order to retrieve episodic past events, the missing information needs to be reconstructed using information stored in semantic memory. Failures in these reconstructive processes are expressed as false memories. KIBRA single nucleotide polymorphism (rs17070145) has been linked to episodic memory performance as well as an increased risk of Alzheimer's disease and post-traumatic stress disorder (PTSD). METHODS Here, the role of KIBRA rs17070145 polymorphism (male and female CC vs. CT/TT carriers) in reconstructive episodic memory in the Deese-Roediger-McDermott (DRM) paradigm was investigated in N = 219 healthy individuals. RESULTS Female participants outperformed males in the free recall condition. Furthermore, a trend towards a gender x genotype interaction was found for false recognition rates. Female CT/TT carriers exhibited a lower proportion of false recognition rates for associated critical lures as compared to male CT/TT. Additionally, an association between KIBRA rs17070145 genotype, familiarity and recollection based recognition performance was found. In trials with correct recognition of listed items CT/TT carriers showed more "remember", but fewer "know" responses as compared to CC carriers. DISCUSSION AND CONCLUSION Our findings suggest that the T-allele of KIBRA rs17070145 supports recollection based episodic memory retrieval and contributes to memory accuracy in a gender dependent manner. Findings are discussed in the context of the specific contribution of KIBRA related SNPs to reconstructive episodic memory and its implications for cognitive and emotional symptoms in dementia and PTSD.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, 150, 44780, Bochum, Germany.
| | - Friederike Preusser
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, 150, 44780, Bochum, Germany
| | - Susanna Roberts
- Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Marcella L Woud
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, 150, 44780, Bochum, Germany
| | - Kathryn J Lester
- Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Ekrem Dere
- Teaching and Research Unit. Life Sciences (UFR927), University Pierre and Marie Curie, Paris, France
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Thalia C Eley
- Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, 150, 44780, Bochum, Germany
| |
Collapse
|
2
|
Zhang Y, Yuan S, Pu J, Yang L, Zhou X, Liu L, Jiang X, Zhang H, Teng T, Tian L, Xie P. Integrated Metabolomics and Proteomics Analysis of Hippocampus in a Rat Model of Depression. Neuroscience 2018; 371:207-220. [DOI: 10.1016/j.neuroscience.2017.12.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 02/06/2023]
|
3
|
Stepan J, Anderzhanova E, Gassen NC. Hippo Signaling: Emerging Pathway in Stress-Related Psychiatric Disorders? Front Psychiatry 2018; 9:715. [PMID: 30627107 PMCID: PMC6309125 DOI: 10.3389/fpsyt.2018.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022] Open
Abstract
Discovery of the Hippo pathway and its core components has made a significant impact on our progress in the understanding of organ development, tissue homeostasis, and regeneration. Upon diverse extracellular and intracellular stimuli, Hippo signaling regulates stemness, cell proliferation and apoptosis by a well-conserved signaling cascade, and disruption of these systems has been implicated in cancer as well as metabolic and neurodegenerative diseases. The central role of Hippo signaling in cell biology also results in prominent links to stress-regulated pathways. Genetic variations, epigenetically provoked upregulation of Hippo pathway members and dysregulation of cellular processes implicated in learning and memory, are linked to an increased risk of stress-related psychiatric disorders (SRPDs). In this review, we summarize recent findings, supporting the role of Hippo signaling in SRPDs by canonical and non-canonical Hippo pathway interactions.
Collapse
Affiliation(s)
- Jens Stepan
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elmira Anderzhanova
- Clinic and Polyclinic of Psychiatry and Psychotherapy, Bonn University Clinic, Bonn, Germany
| | - Nils C Gassen
- Clinic and Polyclinic of Psychiatry and Psychotherapy, Bonn University Clinic, Bonn, Germany
| |
Collapse
|
4
|
Yang Q, Song D, Qing H. Neural changes in Alzheimer's disease from circuit to molecule: Perspective of optogenetics. Neurosci Biobehav Rev 2017; 79:110-118. [PMID: 28522119 DOI: 10.1016/j.neubiorev.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD), as a crucial neurodegenerative disorder, affects neural activities at many levels. Synaptic plasticity and neural circuits are most susceptible in AD, but the detailed mechanism is unclear. Optogenetic tools provide unprecedented spatio-temporal specificity to stimulate specific neural circuits or synaptic molecules to reveal the precise function of normal brain and mechanism of deficits in AD models. Furthermore, using optogenetics to stimulate neurons can rescue learning and memory loss caused by AD. It also has possibility to use light to control the Neurotransmitter receptors and their downstream signal pathway. These technical methods have broad therapeutic application prospect.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
5
|
Tandon N, Nanda P, Padmanabhan JL, Mathew IT, Eack SM, Narayanan B, Meda SA, Bergen SE, Ruaño G, Windemuth A, Kocherla M, Petryshen TL, Clementz B, Sweeney J, Tamminga C, Pearlson G, Keshavan MS. Novel gene-brain structure relationships in psychotic disorder revealed using parallel independent component analyses. Schizophr Res 2017; 182:74-83. [PMID: 27789186 DOI: 10.1016/j.schres.2016.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Schizophrenia, schizoaffective disorder, and psychotic bipolar disorder overlap with regard to symptoms, structural and functional brain abnormalities, and genetic risk factors. Neurobiological pathways connecting genes to clinical phenotypes across the spectrum from schizophrenia to psychotic bipolar disorder remain largely unknown. METHODS We examined the relationship between structural brain changes and risk alleles across the psychosis spectrum in the multi-site Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) cohort. Regional MRI brain volumes were examined in 389 subjects with a psychotic disorder (139 schizophrenia, 90 schizoaffective disorder, and 160 psychotic bipolar disorder) and 123 healthy controls. 451,701 single-nucleotide polymorphisms were screened and processed using parallel independent component analysis (para-ICA) to assess associations between genes and structural brain abnormalities in probands. RESULTS 482 subjects were included after quality control (364 individuals with psychotic disorder and 118 healthy controls). Para-ICA identified four genetic components including several risk genes already known to contribute to schizophrenia and bipolar disorder and revealed three structural components that showed overlapping relationships with the disease risk genes across the three psychotic disorders. Functional ontologies representing these gene clusters included physiological pathways involved in brain development, synaptic transmission, and ion channel activity. CONCLUSIONS Heritable brain structural findings such as reduced cortical thickness and surface area in probands across the psychosis spectrum were associated with somewhat distinct genes related to putative disease pathways implicated in psychotic disorders. This suggests that brain structural alterations might represent discrete psychosis intermediate phenotypes along common neurobiological pathways underlying disease expression across the psychosis spectrum.
Collapse
Affiliation(s)
- Neeraj Tandon
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA; Baylor College of Medicine, Texas Medical Center, Houston, TX, USA.
| | - Pranav Nanda
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA; College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jaya L Padmanabhan
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA
| | - Ian T Mathew
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA
| | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA, USA
| | - Balaji Narayanan
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - Shashwath A Meda
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - Sarah E Bergen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Brett Clementz
- Department of Psychology, Department of Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | | | | | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - Matcheri S Keshavan
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA
| |
Collapse
|
6
|
Lipina TV, Prasad T, Yokomaku D, Luo L, Connor SA, Kawabe H, Wang YT, Brose N, Roder JC, Craig AM. Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission. Neuropsychopharmacology 2016; 41:802-10. [PMID: 26171716 PMCID: PMC4707826 DOI: 10.1038/npp.2015.206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/05/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022]
Abstract
Calsyntenin-2 has an evolutionarily conserved role in cognition. In a human genome-wide screen, the CLSTN2 locus was associated with verbal episodic memory, and expression of human calsyntenin-2 rescues the associative learning defect in orthologous Caenorhabditis elegans mutants. Other calsyntenins promote synapse development, calsyntenin-1 selectively of excitatory synapses and calsyntenin-3 of excitatory and inhibitory synapses. We found that targeted deletion of calsyntenin-2 in mice results in a selective reduction in functional inhibitory synapses. Reduced inhibitory transmission was associated with a selective reduction of parvalbumin interneurons in hippocampus and cortex. Clstn2(-/-) mice showed normal behavior in elevated plus maze, forced swim test, and novel object recognition assays. However, Clstn2(-/-) mice were hyperactive in the open field and showed deficits in spatial learning and memory in the Morris water maze and Barnes maze. These results confirm a function for calsyntenin-2 in cognitive performance and indicate an underlying mechanism that involves parvalbumin interneurons and aberrant inhibitory transmission.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada,Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Tuhina Prasad
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Daisaku Yokomaku
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lin Luo
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Steven A Connor
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada,Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada,Brain Research Centre, University of British Columbia, Room F149, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada, Tel: +604 822 7283, Fax: +604 822 7299, E-mail:
| |
Collapse
|
7
|
Talarowska M, Szemraj J, Kowalczyk M, Gałecki P. Serum KIBRA mRNA and Protein Expression and Cognitive Functions in Depression. Med Sci Monit 2016; 22:152-60. [PMID: 26768155 PMCID: PMC4716708 DOI: 10.12659/msm.895200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genes participating in synaptic signalling or plasticity in brain regions such as the prefrontal cortex (PFC) and the hippocampus have been implicated in cognition. Recently, a new gene (KIBRA, WWC1) has been added to this group due to its impact on memory performance. Recurrent depressive disorder (rDD) is a multifactorial disease, that one of the typical features is cognitive impairment. The main objective of this study was to perform an analysis of the KIBRA gene on both mRNA and protein levels in patients suffering from rDD and to investigate the relationship between KIBRA expression and cognitive performance. MATERIAL/METHODS The study comprised 236 subjects: patients with rDD (n=131) and healthy subjects (n=105, HS). Cognitive function assessment was based on: Trail Making Test, The Stroop Test, Verbal Fluency Test and Auditory Verbal Learning Test. RESULTS Both mRNA and protein expression levels of KIBRA gene were significantly higher in healthy subjects when compared to rDD. The presented relationship is clear even after taking age, education and sex of the examined subjects into consideration. No statistically significant relationship was found in the experiments between any of the conducted tests and KIBRA gene expression on mRNA level for both the rDD and HS groups. The presented study has limitations related to the fact that patients were being treated with antidepressant. This is relevant due to the fact that some antidepressants may affect mRNA expression. Number of patients and healthy subjects may result in the lack of statistical significance in some cases. CONCLUSIONS 1. The results of our study show decreased expression of the KIBRA gene on both mRNA and protein levels in depression. 2. We did not find any significant relationship between KIBRA gene expression and cognitive functions in case of both the healthy subjects and the patients affected by rDD.
Collapse
Affiliation(s)
- Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
8
|
Boraxbekk CJ, Ames D, Kochan NA, Lee T, Thalamuthu A, Wen W, Armstrong NJ, Kwok JBJ, Schofield PR, Reppermund S, Wright MJ, Trollor JN, Brodaty H, Sachdev P, Mather KA. Investigating the influence of KIBRA and CLSTN2 genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. Neuropsychologia 2015; 78:10-7. [PMID: 26415670 DOI: 10.1016/j.neuropsychologia.2015.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022]
Abstract
The variability of episodic memory decline and hippocampal atrophy observed with increasing age may partly be explained by genetic factors. KIBRA (kidney and brain expressed protein) and CLSTN2 (calsyntenin 2) are two candidate genes previously linked to episodic memory performance and volume of the hippocampus, a key memory structure. However, whether polymorphisms in these two genes also influence age-related longitudinal memory decline and hippocampal atrophy is still unknown. Using data from two independent cohorts, the Sydney Memory and Ageing Study and the Older Australian Twins Study, we investigated whether the KIBRA and CLSTN2 genetic polymorphisms (rs17070145 and rs6439886) are associated with episodic memory performance and hippocampal volume in older adults (65-90 years at baseline). We were able to examine these polymorphisms in relation to memory and hippocampal volume using cross-sectional data and, more importantly, also using longitudinal data (2 years between testing occasions). Overall we did not find support for an association of KIBRA either alone or in combination with CLSTN2 with memory performance or hippocampal volume, nor did variation in these genes influence longitudinal memory decline or hippocampal atrophy in two cohorts of older adults.
Collapse
Affiliation(s)
- C J Boraxbekk
- CEDAR, Center for Demographic and Aging Research, Umeå University, S-901 87 Umeå, Sweden; UFBI, Umeå centre for Functional Brain Imaging, Umeå University, Sweden.
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia; Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Teresa Lee
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | | | - Wei Wen
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Mathematics and Statistics, Murdoch University, WA, Australia
| | - John B J Kwok
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, UNSW, Sydney, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, UNSW, Sydney, NSW, Australia
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Department of Developmental Disability Neuropsychiatry, UNSW Australia, Sydney, NSW, Australia
| | | | - Julian N Trollor
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Department of Developmental Disability Neuropsychiatry, UNSW Australia, Sydney, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Dementia Collaborative Research Centre, UNSW Australia, Sydney, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, UNSW Australia, Sydney, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Karen A Mather
- National Ageing Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Papenberg G, Lindenberger U, Bäckman L. Aging-related magnification of genetic effects on cognitive and brain integrity. Trends Cogn Sci 2015; 19:506-14. [PMID: 26187033 DOI: 10.1016/j.tics.2015.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Heritability studies document substantial genetic influences on cognitive performance and decline in old age. Increasing evidence shows that effects of genetic variations on cognition, brain structure, and brain function become stronger as people age. Disproportionate impairments are typically observed for older individuals carrying disadvantageous genotypes of different candidate genes. These data support the resource-modulation hypothesis, which states that genetic effects are magnified in persons with constrained neural resources, such as older adults. However, given that findings are not unequivocal, we discuss the need to address several factors that may resolve inconsistencies in the extant literature (gene-gene and gene-environment interactions, study populations, gene-environment correlations, and epigenetic mechanisms).
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging. Neuropsychol Rev 2015; 25:47-62. [DOI: 10.1007/s11065-015-9279-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/20/2015] [Indexed: 01/28/2023]
|