1
|
Allen KR, Smith KA, Bird LA, Tenenbaum JB, Makin TR, Cowie D. Lifelong learning of cognitive styles for physical problem-solving: The effect of embodied experience. Psychon Bull Rev 2024; 31:1364-1375. [PMID: 38049575 PMCID: PMC11192818 DOI: 10.3758/s13423-023-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
'Embodied cognition' suggests that our bodily experiences broadly shape our cognitive capabilities. We study how embodied experience affects the abstract physical problem-solving styles people use in a virtual task where embodiment does not affect action capabilities. We compare how groups with different embodied experience - 25 children and 35 adults with congenital limb differences versus 45 children and 40 adults born with two hands - perform this task, and find that while there is no difference in overall competence, the groups use different cognitive styles to find solutions. People born with limb differences think more before acting but take fewer attempts to reach solutions. Conversely, development affects the particular actions children use, as well as their persistence with their current strategy. Our findings suggest that while development alters action choices and persistence, differences in embodied experience drive changes in the acquisition of cognitive styles for balancing acting with thinking.
Collapse
Affiliation(s)
- Kelsey R Allen
- Department of Brain and Cognitive Sciences, MIT and Center for Brains, Minds, and Machines, Cambridge, MA, USA.
| | - Kevin A Smith
- Department of Brain and Cognitive Sciences, MIT and Center for Brains, Minds, and Machines, Cambridge, MA, USA
| | | | - Joshua B Tenenbaum
- Department of Brain and Cognitive Sciences, MIT and Center for Brains, Minds, and Machines, Cambridge, MA, USA
| | - Tamar R Makin
- MRC Cognition Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothy Cowie
- Department of Psychology, Durham University, Durham, UK
| |
Collapse
|
2
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
3
|
Maimon-Mor RO, Schone HR, Henderson Slater D, Faisal AA, Makin TR. Early life experience sets hard limits on motor learning as evidenced from artificial arm use. eLife 2021; 10:66320. [PMID: 34605407 PMCID: PMC8523152 DOI: 10.7554/elife.66320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The study of artificial arms provides a unique opportunity to address long-standing questions on sensorimotor plasticity and development. Learning to use an artificial arm arguably depends on fundamental building blocks of body representation and would therefore be impacted by early life experience. We tested artificial arm motor-control in two adult populations with upper-limb deficiencies: a congenital group—individuals who were born with a partial arm, and an acquired group—who lost their arm following amputation in adulthood. Brain plasticity research teaches us that the earlier we train to acquire new skills (or use a new technology) the better we benefit from this practice as adults. Instead, we found that although the congenital group started using an artificial arm as toddlers, they produced increased error noise and directional errors when reaching to visual targets, relative to the acquired group who performed similarly to controls. However, the earlier an individual with a congenital limb difference was fitted with an artificial arm, the better their motor control was. Since we found no group differences when reaching without visual feedback, we suggest that the ability to perform efficient visual-based corrective movements is highly dependent on either biological or artificial arm experience at a very young age. Subsequently, opportunities for sensorimotor plasticity become more limited.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Laboratory of Brain & Cognition, NIMH, National Institutes of Health, Bethesda, United States
| | | | - A Aldo Faisal
- Departments of Bioengineering and of Computing, Imperial College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
4
|
Maimon-Mor RO, Schone HR, Moran R, Brugger P, Makin TR. Motor control drives visual bodily judgements. Cognition 2020; 196:104120. [PMID: 31945591 PMCID: PMC7033558 DOI: 10.1016/j.cognition.2019.104120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
The 'embodied cognition' framework proposes that our motor repertoire shapes visual perception and cognition. But recent studies showing normal visual body representation in individuals born without hands challenges the contribution of motor control on visual body representation. Here, we studied hand laterality judgements in three groups with fundamentally different visual and motor hand experiences: two-handed controls, one-handers born without a hand (congenital one-handers) and one-handers with an acquired amputation (amputees). Congenital one-handers, lacking both motor and first-person visual information of their missing hand, diverged in their performance from the other groups, exhibiting more errors for their intact hand and slower reaction-times for challenging hand postures. Amputees, who have lingering non-visual motor control of their missing (phantom) hand, performed the task similarly to controls. Amputees' reaction-times for visual laterality judgements correlated positively with their phantom hand's motor control, such that deteriorated motor control associated with slower visual laterality judgements. Finally, we have implemented a computational simulation to describe how a mechanism that utilises a single hand representation in congenital one-handers as opposed to two in controls, could replicate our empirical results. Together, our findings demonstrate that motor control is a driver in making visual bodily judgments.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK.
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Rani Moran
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Peter Brugger
- Department of Neurology, Neuropsychology Unit, University Hospital Zurich, Switzerland
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Aboseria M, Clemente F, Engels LF, Cipriani C. Discrete Vibro-Tactile Feedback Prevents Object Slippage in Hand Prostheses More Intuitively Than Other Modalities. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1577-1584. [DOI: 10.1109/tnsre.2018.2851617] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Hahamy A, Macdonald SN, van den Heiligenberg F, Kieliba P, Emir U, Malach R, Johansen-Berg H, Brugger P, Culham JC, Makin TR. Representation of Multiple Body Parts in the Missing-Hand Territory of Congenital One-Handers. Curr Biol 2017; 27:1350-1355. [PMID: 28434861 PMCID: PMC5434257 DOI: 10.1016/j.cub.2017.03.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/30/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
Individuals born without one hand (congenital one-handers) provide a unique model for understanding the relationship between focal reorganization in the sensorimotor cortex and everyday behavior. We previously reported that the missing hand’s territory of one-handers becomes utilized by its cortical neighbor (residual arm representation), depending on residual arm usage in daily life to substitute for the missing hand’s function [1, 2]. However, the repertoire of compensatory behaviors may involve utilization of other body parts that do not cortically neighbor the hand territory. Accordingly, the pattern of brain reorganization may be more extensive [3]. Here we studied unconstrained compensatory strategies under ecological conditions in one-handers, as well as changes in activation, connectivity, and neurochemical profile in their missing hand’s cortical territory. We found that compensatory behaviors in one-handers involved multiple body parts (residual arm, lips, and feet). This diversified compensatory profile was associated with large-scale cortical reorganization, regardless of cortical proximity to the hand territory. Representations of those body parts used to substitute hand function all mapped onto the cortical territory of the missing hand, as evidenced by task-based and resting-state fMRI. The missing-hand territory also exhibited reduced GABA levels, suggesting a reduction in connectional selectivity to enable the expression of diverse cortical inputs. Because the same body parts used for compensatory purposes are those showing increased representation in the missing hand’s territory, we suggest that the typical hand territory may not necessarily represent the hand per se, but rather any other body part that shares the functionality of the missing hand [4]. Compensatory behavior in one-handers involves utilization of multiple body parts Multiple body parts benefit from increased representation in the missing-hand area The missing-hand area showed reduced connectional selectivity (lower GABA levels)
Collapse
Affiliation(s)
- Avital Hahamy
- Department of Neurobiology, Weizmann Institute of Science, Herzl Street, Rehovot 7610001, Israel
| | - Scott N Macdonald
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5B7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Fiona van den Heiligenberg
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Paullina Kieliba
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Uzay Emir
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Herzl Street, Rehovot 7610001, Israel
| | - Heidi Johansen-Berg
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Peter Brugger
- Department of Neurology, Neuropsychology Unit, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Jody C Culham
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5B7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Tamar R Makin
- FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK; Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| |
Collapse
|