1
|
Sharma R, Thirugnanasambandam N. Theta-Gamma Decoupling - A neurophysiological marker of impaired reward processing in Parkinson's disease. Brain Res 2025; 1850:149406. [PMID: 39708901 DOI: 10.1016/j.brainres.2024.149406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Individuals with Parkinson's disease (PD) exhibit altered reward processing, reflected by a decreased amplitude of an event-related potential (ERP) marker called reward positivity (RewP). Most studies have used RewP to investigate reward behavior due to the high temporal resolution of EEG and its high sensitivity. However, traditional single-electrode ERP analyses often overlook the intricate dynamics of non-phase-locked oscillatory activity and the complex interactions within these neural oscillatory patterns. Studying oscillatory activity is crucial as it provides mechanistic insights into the functional, spatial, and temporal aspects of neuronal processing. To address this gap, we employed a data-driven approach to identify EEG-based markers associated with PD reward processing deficits. Using an openly available 64-channel EEG dataset of 28 age- and sex-matched PD and control participants during a reinforcement learning task, we conducted a comprehensive secondary analysis. First, we employed a cluster-based permutation method to extract ERP markers, finding a consistent decrease in reward positivity in PD, regardless of medication status. Additionally, through region of interest (ROI) analysis on time-frequency data, we identified specific oscillatory patterns during reward processing. PD patients exhibited attenuated theta power and increased gamma power compared to healthy controls (HC). Notably, within the PD group, those off medication showed anterior localization of high gamma power, while those on medication displayed higher posterior gamma power. Building upon these findings, we explored phase-amplitude coupling between theta phase and gamma amplitude measured by the modulation index. We observed a trend of decreased theta-gamma coupling in PD patients, with statistically significant differences between on and off medication conditions. These results highlight the potential role of theta-gamma coupling as a neuromodulatory target for improving goal-oriented behavior in PD. Our correlation analyses suggest that high gamma power is linked to longer disease duration, while reduced reward positivity and low theta-gamma coupling may serve as markers of the dopaminergic impact on reward processing. Thus, our study unveils the intricate time-frequency dynamics underlying reward processing deficits in PD, emphasizing the utility of a data-driven approach to elucidate neural mechanisms and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Rashi Sharma
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India.
| |
Collapse
|
2
|
Papa EV, Tolman J, Meyerhoeffer C, Reierson K. Motivational Modulation Enhances Movement Performance in Parkinson's Disease: A Systematic Review. PHYSICAL THERAPY REVIEWS 2024; 29:117-127. [PMID: 39036073 PMCID: PMC11259181 DOI: 10.1080/10833196.2024.2365568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Background The assessment of motivation and its modulation during treatment are essential aspects of physical therapy practice. However, the modulation of motivation has been sparsely investigated in persons with Parkinson's disease (PD) and at present no studies have synthesized its effects on movement performance. Objectives 4The purpose of this study was to systematically examine the efficacy of motivational modulation on movement performance in PD and to provide recommendations for its role in physical therapy practice. Methods Systematic identification of published literature was performed adhering to PRISMA guidelines, from January 2005 to March 2023. Keywords were used in the following electronic databases: PubMed, Academic Search Complete, the Cochrane Database, Google Scholar, and the Physiotherapy Evidence Database (PEDro). A level of evidence rating was completed according to the scale provided by the American Academy of Cerebral Palsy and Development Medicine. Quality assessments were performed using the Modified Downs and Black checklist. Results Eight studies were included in this review, all achieving level III evidence. The methodological quality of studies was varied, with most studies attaining a fair rating. Persons with PD performed upper extremity movement tasks with greater intensity when incentivized with larger rewards compared to smaller incentives. Dopamine replacement medication, Deep Brain Stimulation, and a history of depression, had mediating effects on the response to motivational modulation. Conclusions Our findings suggest that it is plausible to improve adherence to exercise when physical therapists modulate motivation through computerized game achievements, gamification of tasks, or other forms of reward and non-rewarding stimuli.
Collapse
Affiliation(s)
- Evan V. Papa
- Department of Rehabilitation Sciences, Tufts University School of Medicine, Boston, USA
| | - Jason Tolman
- Acute Care Physical Therapy Residency University of Utah, Salt Lake City, USA
| | | | | |
Collapse
|
3
|
Manssuer L, Wang L, Ding Q, Li J, Zhang Y, Zhang C, Hallett M, Li D, Sun B, Voon V. Subthalamic Oscillatory Activity of Reward and Loss Processing Using the Monetary Incentive Delay Task in Parkinson Disease. Neuromodulation 2023; 26:414-423. [PMID: 35570149 PMCID: PMC10385018 DOI: 10.1016/j.neurom.2022.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The subthalamic nucleus (STN) is an effective deep brain stimulation target for Parkinson disease (PD) and obsessive-compulsive disorder and has been implicated in reward and motivational processing. In this study, we assessed the STN and prefrontal oscillatory dynamics in the anticipation and receipt of reward and loss using a task commonly used in imaging. MATERIALS AND METHODS We recorded intracranial left subthalamic local field potentials from deep brain stimulation electrodes and prefrontal scalp electroencephalography in 17 patients with PD while they performed a monetary incentive delay task. RESULTS During the expectation phase, enhanced left STN delta-theta activity was observed in both reward and loss vs neutral anticipation, with greater STN delta-theta activity associated with greater motivation specifically to reward. In the consummatory outcome phase, greater left STN delta activity was associated with a rewarding vs neutral outcome, particularly with more ventral contacts along with greater delta-theta coherence with the prefrontal cortex. We highlight a differential activity in the left STN to loss vs reward anticipation, demonstrating a distinct STN high gamma activity. Patients with addiction-like behaviors show lower left STN delta-theta activity to loss vs neutral outcomes, emphasizing impaired sensitivity to negative outcomes. CONCLUSIONS Together, our findings highlight a role for the left STN in reward and loss processing and a potential role in addictive behaviors. These findings emphasize the cognitive-limbic function of the STN and its role as a physiologic target for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Linbin Wang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qiong Ding
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jun Li
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Dianyou Li
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Valerie Voon
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, UK; Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Leimbach F, Atkinson-Clement C, Socorro P, Jahanshahi M. The Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease on Associative Learning of Verbal and Non-Verbal Information by Trial and Error or with Corrective Feedback. JOURNAL OF PARKINSON'S DISEASE 2022; 12:885-896. [PMID: 35342046 DOI: 10.3233/jpd-212843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parkinson's disease (PD) and subthalamic nucleus deep brain stimulation (STN-DBS) are both known to induce cognitive changes. OBJECTIVE The aim of our study was to investigate the impact of STN-DBS on two forms of conditional associative learning (CAL), trial and error or corrective feedback learning, which differed in difficulty to test the load-dependency hypothesis of the cognitive effects of STN-DBS in PD. METHODS We recruited two groups of PD patients, those who had STN-DBS surgery bilaterally (n = 24) and a second unoperated group (n = 9) who were assessed on two versions of a task of visual CAL involving either a more difficult trial and error learning or a relatively easier corrective feedback learning. Each task was completed twice by both groups, On and Off STN-DBS for the operated group and a first and second time by the unoperated group. RESULTS With STN-DBS Off, corrective feedback learning was superior to trial and error CAL, but not with STN-DBS On. The unoperated PD group had improved performance during the second assessment. To control for the improvement observed with repeated assessment in the PD control group, we split the STN-DBS group into two subgroups based on the condition of the first assessment (Off first vs. On first). While we found no STN-DBS effects for the Off first subgroup (N = 14), we observed improved performance during the second STN-DBS Off session for the On first subgroup (N = 10). CONCLUSION The findings suggest that in PD, STN-DBS interferes with use of corrective feedback and its integration in the conditional associative learning process. Also STN stimulation affected the ability of operated patients to resolve proactive interference during learning of the arbitrary visual associations by trial and error or with corrective feedback.
Collapse
Affiliation(s)
- Friederike Leimbach
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Cyril Atkinson-Clement
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Pieter Socorro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Weidacker K, Kvamme TL, Whiteford S, Valle Guzman N, Voon V. Incentives and voluntary stopping: The intentional hand task. Cognition 2020; 206:104504. [PMID: 33161198 DOI: 10.1016/j.cognition.2020.104504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022]
Abstract
Intentional inhibition, the endogenous decision to stop or cancel an action, is arguably a more ecologically valid process than automatized, reactive, inhibition which occurs in response to an external stop signal without active decision making at the moment of inhibition. Choosing to stop an act of opening the fridge door, or of reaching for a bottle of alcohol may therefore extend beyond a reactive inhibitory process, e.g. stopping at a red traffic light. Existing paradigms of intentional inhibition focus on the proportions of intentional stops. Here we developed the Intentional Hand Task, which provides stop response times for intentional and instructed trials. Participants move a cursor by initiating an arm movement, after which a Go, Stop or Choice trial occurs. In Go trials, participants are instructed to make a speeded continuation of their arm movement towards a target whereas in the Stop trials participants are instructed to rapidly stop the already initiated movement. In Choice trials, participants chose whether to continue or stop the movement. By comparing response times when movement was stopped, we found that intentionally stopping took significantly longer than externally instructed stopping. We further investigated the influence of reward incentives, by cueing trials with either the prospect of No, Low or High reward for correctly continuing in Go trials, stopping in Stop trials or achieving a random balance of intentional Go and Stops in Choice trials. Reward incentives led to greater approach behaviours, indicated by significantly higher Go accuracy in instructed Go trials and faster response times across both Go trial types. The presence of reward incentives led to significantly fewer intentional stop choices. Our findings suggest intentional inhibition of an ongoing action may require a further decisional process. Furthermore, monetary incentives may implicitly trigger an appetitive system thus facilitating approach rather than intentional inhibitory behaviour. These findings are particularly relevant to cue-related relapse in disorders of addiction where cues may facilitate approach behaviours to the detriment of intentional inhibitory control.
Collapse
Affiliation(s)
- Kathrin Weidacker
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Timo L Kvamme
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cognitive Neuroscience Research Unit, CFIN/MIND Lab, Aarhus University, Aarhus, Denmark
| | - Seb Whiteford
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom; NIHR Biomedical Research Council, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Upadhyayula PS, Rennert RC, Martin JR, Yue JK, Yang J, Gillis-Buck EM, Sidhu N, Cheung CK, Lee AT, Hoshide RR, Ciacci JD. Basal impulses: findings from the last twenty years on impulsivity and reward pathways using deep brain stimulation. J Neurosurg Sci 2020; 64:544-551. [PMID: 32972108 DOI: 10.23736/s0390-5616.20.04906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an important treatment modality for movement disorders. Its role in tasks and processes of higher cortical function continues to increase in importance and relevance. This systematic review investigates the impact of DBS on measures of impulsivity. EVIDENCE ACQUISITION A total of 45 studies were collated from PubMed (30 prospective, 8 animal, 4 questionnaire-based, and 3 computational models), excluding case reports and review articles. Two areas extensively studied are the subthalamic nucleus (STN) and nucleus accumbens (NAc). EVIDENCE SYNTHESIS While both are part of the basal ganglia, the STN and NAc have extensive connections to the prefrontal cortex, cingulate cortex, and limbic system. Therefore, understanding cause and treatment of impulsivity requires understanding motor pathways, learning, memory, and emotional processing. DBS of the STN and NAc shell can increase objective measures of impulsivity, as measured by reaction times or reward-based learning, independent from patient insight. The ability for DBS to treat impulse control disorders, and also cause and/or worsen impulsivity in Parkinson's disease, may be explained by the affected closely-related neuroanatomical areas with discrete and sometimes opposing functions. CONCLUSIONS As newer, more refined DBS technology emerges, large-scale prospective studies specifically aimed at treatment of impulsivity disorders are needed.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Robert C Rennert
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Joel R Martin
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason Yang
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Eva M Gillis-Buck
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nikki Sidhu
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Christopher K Cheung
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anthony T Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Reid R Hoshide
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Joseph D Ciacci
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA -
| |
Collapse
|
7
|
Eisinger RS, Scott BM, Le A, Ponce EMT, Lanese J, Hundley C, Nelson B, Ravy T, Lopes J, Thompson S, Sathish S, O'Connell RL, Okun MS, Bowers D, Gunduz A. Pavlovian bias in Parkinson's disease: an objective marker of impulsivity that modulates with deep brain stimulation. Sci Rep 2020; 10:13448. [PMID: 32778775 PMCID: PMC7417529 DOI: 10.1038/s41598-020-69760-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Impulsivity is a common symptom in Parkinson's disease (PD). Adaptive behavior is influenced by prepotent action-reward and inaction-avoid loss Pavlovian biases. We aimed to assess the hypothesis that impulsivity in PD is associated with Pavlovian bias, and to assess whether dopaminergic medications and deep brain stimulation (DBS) influence Pavlovian bias. A PD DBS cohort (N = 37) completed a reward-based Go/No-Go task and bias measures were calculated. This DBS cohort completed the task under three conditions: on-med/pre-DBS, off-med/off-DBS, and on-med/on-DBS. Participants also completed self-reported measures of impulsivity. Dopaminergic medication was associated with lower action-reward bias while DBS was associated with higher action-reward bias. Impulsivity was associated with higher action-reward bias but not inaction-avoid loss bias. We furthermore replicated this association in an independent, non-DBS PD cohort (N = 88). Overall we establish an objective behavioral marker of impulsivity and show that DBS affects impulsivity by amplifying automated responding. Our results point to the importance of reward rather than punishment avoidance in driving impulsive behaviors. This work provides insight into the pathophysiological underpinnings of impulsivity and especially medication and DBS-associated impulsivity in PD.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA.
| | - Bonnie M Scott
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Anh Le
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Elena M Torres Ponce
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Joseph Lanese
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Christopher Hundley
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Brawn Nelson
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Tasmeah Ravy
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Janine Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Sable Thompson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Sneha Sathish
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Rebecca L O'Connell
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Carland MA, Thura D, Cisek P. The Urge to Decide and Act: Implications for Brain Function and Dysfunction. Neuroscientist 2019; 25:491-511. [DOI: 10.1177/1073858419841553] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Humans and other animals are motivated to act so as to maximize their subjective reward rate. Here, we propose that reward rate maximization is accomplished by adjusting a context-dependent “urgency signal,” which influences both the commitment to a developing action choice and the vigor with which the ensuing action is performed. We review behavioral and neurophysiological data suggesting that urgency is controlled by projections from the basal ganglia to cerebral cortical regions, influencing neural activity related to decision making as well as activity related to action execution. We also review evidence suggesting that different individuals possess specific policies for adjusting their urgency signal to particular contextual variables, such that urgency constitutes an individual trait which jointly influences a wide range of behavioral measures commonly related to the overall quality and hastiness of one’s decisions and actions. Consequently, we argue that a central mechanism for reward rate maximization provides a potential link between personality traits such as impulsivity, as well as some of the motivation-related symptomology of clinical disorders such as depression and Parkinson’s disease.
Collapse
Affiliation(s)
- Matthew A. Carland
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - David Thura
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Paul Cisek
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Enhanced Motivational Modulation of Motor Behaviour with Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:3604372. [PMID: 30719276 PMCID: PMC6334333 DOI: 10.1155/2019/3604372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023]
Abstract
Background Motivational improvement of movement speed in Parkinson's disease (PD) is observed in life-threatening situations and has been empirically demonstrated in experimental studies using reaction time paradigms. Objectives To address two clinically relevant questions: first, if in PD, motivational modulation through provision of monetary incentive on a sorting task that approximates performance on everyday life tasks affects movement speed. Second, how this effect is compared between PD patients treated with medication or subthalamic deep brain stimulation. Methods We used the Card Arranging Reward Responsivity Objective Test that shares component processes with everyday life tasks to compare reward responsivity of movement speed in 10 PD patients with STN-DBS, 10 nonoperated medicated PD patients, both OFF and ON their usual medications/stimulation, and 11 age-matched healthy controls. Results Despite longer disease duration and more severe motor symptoms, STN-DBS PD patients with the stimulator turned ON showed greater improvement of movement speed with the prospect of monetary incentive compared to both medicated PD patients and healthy participants. Discussion The effect of monetary incentive on movement speed in PD patients is more pronounced with STN-DBS than dopaminergic medications, suggesting that motivational modulation of movement speed may be enhanced as a direct consequence of STN stimulation.
Collapse
|
10
|
Irmen F, Horn A, Meder D, Neumann WJ, Plettig P, Schneider GH, Siebner HR, Kühn AA. Sensorimotor subthalamic stimulation restores risk-reward trade-off in Parkinson's disease. Mov Disord 2018; 34:366-376. [PMID: 30485537 DOI: 10.1002/mds.27576] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND STN-DBS effectively treats motor symptoms of advanced PD. Nonmotor cognitive symptoms, such as impaired impulse control or decision making, may either improve or worsen with DBS. A potential mediating factor of DBS-induced modulation of cognition is the electrode position within the STN with regard to functional subareas of parallel motor, cognitive, and affective basal ganglia loops. However, to date, the volume of tissue activated and weighted stimulation of STN motor versus nonmotor territories are yet to be linked to differential DBS effects on cognition. OBJECTIVES We aim to investigate whether STN-DBS influences risk-reward trade-off decisions and analyze its dependency on electrode placement. METHODS Seventeen PD patients ON and OFF STN-DBS and 17 age-matched healthy controls conducted a sequential decision-making task with escalating risk and reward. We computed the effect of STN-DBS on risk-reward trade-off decisions, localized patients' bilateral electrodes, and analyzed the predictive value of volume of tissue activated in STN motor and nonmotor territories on behavioral change. RESULTS We found that STN-DBS not only improves PD motor symptoms, but also normalizes overly risk-averse decision behavior in PD. Intersubject variance in electrode location could explain this behavioral change. Specifically, if STN-DBS activated preferentially STN motor territory, patients' risk-reward trade-off decisions more resembled those of healthy controls. CONCLUSIONS Our findings support the notion of convergence of different functional circuits within the STN and imply a positive effect of well-placed STN-DBS on nonmotor cognitive functioning in PD. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Friederike Irmen
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Philip Plettig
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|