1
|
Li B, Chen H, Zheng Y, Xu X, You Z, Huang Q, Huang Y, Guan Y, Zhao J, Liu J, Xie F, Wang J, Xu W, Zhang J, Deng Y. Loss of synaptic density in nucleus basalis of meynert indicates distinct neurodegeneration in Alzheimer's disease: the RJNB-D study. Eur J Nucl Med Mol Imaging 2024; 52:134-144. [PMID: 39112615 DOI: 10.1007/s00259-024-06862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS In our study, we included 44 Aβ-negative normal controls (CN) and 76 Aβ-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Zheng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomeng Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfang Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Moazzen S, Janke J, Slooter AJC, Winterer G, Spies C, Pischon T, Feinkohl I. The association of pre-operative biomarkers of endothelial dysfunction with the risk of post-operative neurocognitive disorders: results from the BioCog study. BMC Anesthesiol 2024; 24:358. [PMID: 39379830 PMCID: PMC11459984 DOI: 10.1186/s12871-024-02722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Endothelial dysfunction (ED) promotes the development of atherosclerosis, and studies suggest an association with age-related neurocognitive disorders. It is currently unclear whether ED is also associated with the risk of perioperative neurocognitive disorders. METHOD We included 788 participants aged ≥ 65 years of the BioCog study. Patients were scheduled to undergo elective surgery with expected duration > 60 min. Blood was collected before surgery for measurement of 5 biomarkers of ED: asymmetric and symmetric dimethylarginine (ADMA; SDMA), intercellular and vascular adhesion molecule (ICAM-1, VCAM-1), and von Willebrand factor (vWF). Patients were monitored for the occurrence of postoperative delirium (POD) daily until the 7th postoperative day. 537 (68.1%) patients returned for a 3-month follow-up. Post-operative cognitive dysfunction (POCD) was defined from the change in results on a battery of 6 neuropsychological tests between baseline and 3 months, compared to the change in results of a control group during the 3-month interval. The associations of each of the 5 ED biomarkers with POD and POCD respectively were determined using multiple logistic regression analyses with adjustment for age, sex, surgery type, pre-morbid IQ, body mass index, hypertension, diabetes, HbA1C, triglyceride, total and HDL cholesterol. RESULTS 19.8% of 788 patients developed POD; 10.1% of 537 patients had POCD at 3 months. Concentrations of ED biomarkers were not significantly associated with a POD. A higher VCAM-1 concentration was associated with a reduced POCD risk (adjusted odds ratio 0.55; 95% CI: 0.35-0.86). No further statistically significant results were found. CONCLUSION Pre-operative concentrations of ED biomarkers were not associated with POD risk. We unexpectedly found higher VCAM-1 to be associated with a reduced POCD risk. Further studies are needed to evaluate these findings.
Collapse
Affiliation(s)
- Sara Moazzen
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| | - Jürgen Janke
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| | - Arjen J C Slooter
- Departments of Psychiatry and Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Georg Winterer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Claudia Spies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Insa Feinkohl
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany.
- Medical Biometry and Epidemiology Research Group, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
3
|
Lammers-Lietz F, Borchers F, Feinkohl I, Hetzer S, Kanar C, Konietschke F, Lachmann G, Chien C, Spies C, Winterer G, Zaborszky L, Zacharias N, Paul F. An exploratory research report on brain mineralization in postoperative delirium and cognitive decline. Eur J Neurosci 2024; 59:2646-2664. [PMID: 38379517 PMCID: PMC11108748 DOI: 10.1111/ejn.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Delirium is a severe postoperative complication associated with poor overall and especially neurocognitive prognosis. Altered brain mineralization is found in neurodegenerative disorders but has not been studied in postoperative delirium and postoperative cognitive decline. We hypothesized that mineralization-related hypointensity in susceptibility-weighted magnetic resonance imaging (SWI) is associated with postoperative delirium and cognitive decline. In an exploratory, hypothesis-generating study, we analysed a subsample of cognitively healthy patients ≥65 years who underwent SWI before (N = 65) and 3 months after surgery (N = 33). We measured relative SWI intensities in the basal ganglia, hippocampus and posterior basal forebrain cholinergic system (pBFCS). A post hoc analysis of two pBFCS subregions (Ch4, Ch4p) was conducted. Patients were screened for delirium until the seventh postoperative day. Cognitive testing was performed before and 3 months after surgery. Fourteen patients developed delirium. After adjustment for age, sex, preoperative cognition and region volume, only pBFCS hypointensity was associated with delirium (regression coefficient [90% CI]: B = -15.3 [-31.6; -0.8]). After adjustments for surgery duration, age, sex and region volume, perioperative change in relative SWI intensities of the pBFCS was associated with cognitive decline 3 months after surgery at a trend level (B = 6.8 [-0.9; 14.1]), which was probably driven by a stronger association in subregion Ch4p (B = 9.3 [2.3; 16.2]). Brain mineralization, particularly in the cerebral cholinergic system, could be a pathomechanism in postoperative delirium and cognitive decline. Evidence from our studies is limited because of the small sample and a SWI dataset unfit for iron quantification, and the analyses presented here should be considered exploratory.
Collapse
Affiliation(s)
- Florian Lammers-Lietz
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Insa Feinkohl
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Faculty of Health at Department of Medicine, Witten/Herdecke University, Witten, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cicek Kanar
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gunnar Lachmann
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
- Pharmaimage Biomarker Solutions Inc., Cambridge, Massachusetts, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Norman Zacharias
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Pharmaimage Biomarker Solutions Inc., Cambridge, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Heinrich M, Spies C, Borchers F, Feinkohl I, Pischon T, Slooter AJC, von Haefen C, Zacharias N, Winterer G, Lammers-Lietz F. Perioperative Levels of IL8 and IL18, but not IL6, are Associated with Nucleus Basalis Magnocellularis Atrophy Three Months after Surgery. J Neuroimmune Pharmacol 2024; 19:10. [PMID: 38483732 PMCID: PMC10940494 DOI: 10.1007/s11481-024-10110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
Past studies have observed that brain atrophy may accelerate after surgical procedures. Furthermore, an association of systemic inflammation with neurodegeneration has been described. We hypothesize that postoperative interleukin (IL) levels in circulation as well as the perioperative change in interleukin levels are associated with increased postoperative atrophy in the Nucleus basalis magnocellularis (of Meynert, NBM) which is the major source of cortical acetylcholine. We analyzed data from the BioCog cohort which included patients ≥ 65 years presenting for elective major surgery (≥ 60min). Blood samples were taken before surgery and on the first postoperative day. Magnetic resonance imaging of the brain and neuropsychological assessments were conducted before surgery and after three months follow-up. We used linear regression analysis to determine the association of three interleukins (IL6, IL8 and IL18) with NBM atrophy (in % volume change from baseline before surgery to follow-up), as well as to examine the associations of NBM atrophy and volume with postoperative cognitive ability and perioperative cognitive change. Receiver-operating curves were used to determine the prognostic value of preoperative interleukin levels. For IL8 (N = 97) and IL18 (N = 217), but not IL6 (N = 240), we observed significant associations of higher postoperative IL levels at the first postoperative day with higher NBM atrophy at three months after surgery. Subsequent analyses suggested that in both IL8 and IL18, this association was driven by a more general association of chronically elevated IL levels and NBM atrophy, reflected by preoperative IL concentrations, rather than IL response to surgery, measured as the difference between pre- and postoperative IL concentrations. At follow-up, NBM volume was positively associated with the level of cognitive performance, but NBM atrophy was not significantly related to perioperative cognitive change. Prognostic value of preoperative IL concentrations for NBM atrophy was low. Our results suggest that an association of postoperative interleukin levels with NBM atrophy is driven by preoperatively elevated interleukins due to pre-existing inflammation, rather than perioperative change in interleukin levels in response to surgery and anesthesia. The BioCog study has been registered at clinicaltrials.gov on Oct 15, 2014 (NCT02265263).
Collapse
Affiliation(s)
- Maria Heinrich
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Spies
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Friedrich Borchers
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Insa Feinkohl
- Faculty of Health/Department of Medicine at Witten/Herdecke University, Witten/Herdecke, Germany
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arjen J C Slooter
- Department of Intensive Care Medicine and Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
- Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Clarissa von Haefen
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norman Zacharias
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Georg Winterer
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Florian Lammers-Lietz
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany.
| |
Collapse
|
5
|
Doss DJ, Johnson GW, Narasimhan S, Shless JS, Jiang JW, González HFJ, Paulo DL, Lucas A, Davis KA, Chang C, Morgan VL, Constantinidis C, Dawant BM, Englot DJ. Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI. AJNR Am J Neuroradiol 2023; 44:1020-1025. [PMID: 37562826 PMCID: PMC10494939 DOI: 10.3174/ajnr.a7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND PURPOSE The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cognition and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability among patients, and lack of contrast on 3T MR imaging. Thus, our goal was to establish and evaluate a deep learning network for automatic, accurate, and patient-specific segmentations with 3T MR imaging. MATERIALS AND METHODS Patient-specific segmentations can be produced manually; however, the nucleus basalis of Meynert is difficult to accurately segment on 3T MR imaging, with 7T being preferred. Thus, paired 3T and 7T MR imaging data sets of 21 healthy subjects were obtained. A test data set of 6 subjects was completely withheld. The nucleus was expertly segmented on 7T, providing accurate labels for the paired 3T MR imaging. An external data set of 14 patients with temporal lobe epilepsy was used to test the model on brains with neurologic disorders. A 3D-Unet convolutional neural network was constructed, and a 5-fold cross-validation was performed. RESULTS The novel segmentation model demonstrated significantly improved Dice coefficients over the standard probabilistic atlas for both healthy subjects (mean, 0.68 [SD, 0.10] versus 0.45 [SD, 0.11], P = .002, t test) and patients (0.64 [SD, 0.10] versus 0.37 [SD, 0.22], P < .001). Additionally, the model demonstrated significantly decreased centroid distance in patients (1.18 [SD, 0.43] mm, 3.09 [SD, 2.56] mm, P = .007). CONCLUSIONS We developed the first model, to our knowledge, for automatic and accurate patient-specific segmentation of the nucleus basalis of Meynert. This model may enable further study into the nucleus, impacting new treatments such as deep brain stimulation.
Collapse
Affiliation(s)
- D J Doss
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
| | - G W Johnson
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
| | - S Narasimhan
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
- Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - J S Shless
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - J W Jiang
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - H F J González
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
| | - D L Paulo
- Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Lucas
- Department of Bioengineering (A.L.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - K A Davis
- Department of Neuroscience (K.A.D.), University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Neuroengineering and Therapeutics (K.A.D.), University of Pennsylvania, Philadelphia, Pennsylvania
- Neurology (K.A.D.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - C Chang
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
- Department of Electrical and Computer Engineering (C. Chang, B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Department of Computer Science (C. Chang), Vanderbilt University, Nashville, Tennessee
| | - V L Morgan
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
- Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology (V.L.M.), Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiological Sciences (V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Constantinidis
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Department of Ophthalmology and Visual Sciences (C. Constantinidis), Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neuroscience (C. Constantinidis), Vanderbilt University, Nashville, Tennessee
| | - B M Dawant
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
- Department of Electrical and Computer Engineering (C. Chang, B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
| | - D J Englot
- From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee
- Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee
- Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Electrical and Computer Engineering (C. Chang, B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee
- Department of Radiological Sciences (V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Fislage M, Feinkohl I, Borchers F, Pischon T, Spies CD, Winterer G, Zacharias N. Preoperative thalamus volume is not associated with preoperative cognitive impairment (preCI) or postoperative cognitive dysfunction (POCD). Sci Rep 2023; 13:11732. [PMID: 37474784 PMCID: PMC10359451 DOI: 10.1038/s41598-023-38673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
A growing body of literature suggests the important role of the thalamus in cognition and neurodegenerative diseases. This study aims to elucidate whether the preoperative thalamic volume is associated with preoperative cognitive impairment (preCI) and whether it is predictive for postoperative cognitive dysfunction at 3 months (POCD). We enrolled 301 patients aged 65 or older and without signs of dementia who were undergoing elective surgery. Magnetic resonance imaging was conducted prior to surgery. Freesurfer (version 5.3.) was used to automatically segment the thalamus volume. A neuropsychological test battery was administered before surgery and at a 3 month follow-up. It included the computerized tests Paired Associate Learning (PAL), Verbal Recognition Memory (VRM), Spatial Span Length (SSP), Simple Reaction Time (SRT), the pen-and-paper Trail-Making-Test (TMT) and the manual Grooved Pegboard Test (GPT). Using a reliable change index, preCI and POCD were defined as total Z-score > 1.96 (sum score over all tests) and/or Z-scores > 1.96 in ≥ 2 individual cognitive test parameters. For statistical analyses, multivariable logistic regression models were applied. Age, sex and intracranial volume were covariates in the models. Of 301 patients who received a presurgical neuropsychological testing and MRI, 34 (11.3%) had preCI. 89 patients (29.5%) were lost to follow-up. The remaining 212 patients received a follow-up cognitive test after 3 months, of whom 25 (8.3%) presented with POCD. Independently of age, sex and intracranial volume, neither preCI (OR per cm3 increment 0.81 [95% CI 0.60-1.07] p = 0.14) nor POCD (OR 1.02 per cm3 increment [95% CI 0.75-1.40] p = 0.87) were statistically significantly associated with patients' preoperative thalamus volume. In this cohort we could not show an association of presurgical thalamus volume with preCI or POCD.Clinical Trial Number: NCT02265263 ( https://clinicaltrials.gov/ct2/show/results/NCT02265263 ).
Collapse
Affiliation(s)
- Marinus Fislage
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Insa Feinkohl
- Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, Germany
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
8
|
Kindler C, Upadhyay N, Bendella Z, Dorn F, Keil VC, Petzold GC. Independent and additive contribution of white matter hyperintensities and Alzheimer's disease pathology to basal forebrain cholinergic system degeneration. Neuroimage Clin 2023; 39:103477. [PMID: 37478584 PMCID: PMC10387606 DOI: 10.1016/j.nicl.2023.103477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES Degeneration of the cholinergic basal forebrain nuclei (CBFN) system has been studied extensively in Alzheimer's disease (AD). White matter hyperintensities are a hallmark of aging as well as a common co-morbidity of AD, but their contribution to CBFN degeneration has remained unclear. Therefore, we explored the influence of white matter hyperintensities within cholinergic subcortical-cortical projection pathways on CBFN volumes and regional gray matter volumes in AD and age- and gender-matched controls. METHODS We analyzed magnetic resonance images (MRI) from 42 patients with AD and 87 age- and gender-matched control subjects. We assessed the white matter hyperintensity burden within the cholinergic projection pathways using the Cholinergic Pathways Hyperintensities Scale (CHIPS), and applied probabilistic anatomical maps for the analysis of CBFN volumes, i.e. the Ch1-3 compartment and the Ch4 cell group (nucleus basalis of Meynert), by diffeomorphic anatomical registration using exponentiated lie algebra analysis of voxel-based morphometry. Using multiple linear regression analyses, we explored correlations between regional gray matter volumes and the extent of white matter hyperintensities or CBFN volumes in both groups. RESULTS In AD, all CBFN volumes were significantly smaller than in controls, and white matter hyperintensity burden within the cholinergic projection pathways was not correlated with CBFN volume. In controls, white matter hyperintensity burden within the cholinergic projection pathways was inversely correlated with CBFN volume when corrected for sex and total intracranial volume, but this correlation was no longer significant after correction for age. Voxel-wise multiple linear regression analyses using threshold-free cluster enhancement revealed that in controls, cholinergic pathway hyperintensities correlated with gray matter loss in perisylvian areas, whereas the were no effects in AD. Moreover, we found that CBFN volumes correlated with distinct regional cortical atrophy patterns in both groups. CONCLUSION Our results indicate that white matter hyperintensities and AD pathology contribute independently but additively to the degeneration of cholinergic basal forebrain structures. Whereas AD is primarily associated with CBFN volume loss, cholinergic degeneration associated with white matter hyperintensities appears to involve disruption of cholinergic cortical projection fibers with less pronounced effects on CBFN volumes.
Collapse
Affiliation(s)
- Christine Kindler
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Neeraj Upadhyay
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany; Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Zeynep Bendella
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gabor C Petzold
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
9
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Feinkohl I, Janke J, Slooter AJC, Winterer G, Spies C, Pischon T. Metabolic syndrome and the risk of postoperative delirium and postoperative cognitive dysfunction: a multi-centre cohort study. Br J Anaesth 2023:S0007-0912(23)00206-4. [PMID: 37344340 DOI: 10.1016/j.bja.2023.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Metabolic syndrome and its components are risk factors for cognitive impairment, but their contribution to perioperative neurocognitive disorders is unknown. We examined their associations with the risk of postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) in older patients. METHODS In 765 male and female participants aged ≥65 years, we measured preoperative metabolic parameters and screened for POD for 7 days or until discharge. POCD was defined through comparison of cognitive change on six neuropsychological tests with non-surgical controls. Multiple logistic regression analyses examined the association of metabolic parameters with risk of POD and POCD with adjustment for age, sex, and surgery type. RESULTS A total of 149 patients (19.5% of 765) developed POD and 53 (10.1% of 520 attendees) had POCD at 3 months. Patients with metabolic syndrome were at 1.85-fold higher risk of POD (95% confidence interval [CI] 1.26-2.70). Each 1 mmol L-1 higher high-density lipoprotein cholesterol (HDL-C) was associated with a 0.47-fold lower POD risk (95% CI 0.30-0.74). Each 1 kg m-2 higher body mass index (BMI) was associated with a 1.09-fold higher POCD risk (95% CI 1.02- 1.16). CONCLUSIONS Older surgical patients with metabolic syndrome were at increased risk of POD. Only reduced HDL-C was significantly associated with POD. For POCD, a higher preoperative BMI was identified as a risk factor. These findings add to mounting evidence of a distinct epidemiology of POD and POCD. Screening programmes taking advantage of HDL-C and BMI measurements and of metabolic interventions in reducing perioperative neurocognitive disorders should be evaluated. CLINICAL TRIAL REGISTRATION NCT02265263.
Collapse
Affiliation(s)
- Insa Feinkohl
- Witten/Herdecke University, Medical Biometry and Epidemiology Group, Witten, Germany; Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany.
| | - Jürgen Janke
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany; Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| | - Arjen J C Slooter
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Georg Winterer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Spies
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany; Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Biobank, Berlin, Germany
| |
Collapse
|
11
|
Daamen M, Scheef L, Li S, Grothe MJ, Gaertner FC, Buchert R, Buerger K, Dobisch L, Drzezga A, Essler M, Ewers M, Fliessbach K, Herrera Melendez AL, Hetzer S, Janowitz D, Kilimann I, Krause BJ, Lange C, Laske C, Munk MH, Peters O, Priller J, Ramirez A, Reimold M, Rominger A, Rostamzadeh A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel SJ, Wagner M, Düzel E, Jessen F, Boecker H. Cortical Amyloid Burden Relates to Basal Forebrain Volume in Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1013-1028. [PMID: 37638433 DOI: 10.3233/jad-230141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Atrophy of cholinergic basal forebrain (BF) nuclei is a frequent finding in magnetic resonance imaging (MRI) volumetry studies that examined patients with prodromal or clinical Alzheimer's disease (AD), but less clear for individuals in earlier stages of the clinical AD continuum. OBJECTIVE To examine BF volume reductions in subjective cognitive decline (SCD) participants with AD pathologic changes. METHODS The present study compared MRI-based BF volume measurements in age- and sex-matched samples of N = 24 amyloid-positive and N = 24 amyloid-negative SCD individuals, based on binary visual ratings of Florbetaben positron emission tomography (PET) measurements. Additionally, we assessed associations of BF volume with cortical amyloid burden, based on semiquantitative Centiloid (CL) analyses. RESULTS Group differences approached significance for BF total volume (p = 0.061) and the Ch4 subregion (p = 0.059) only, showing the expected relative volume reductions for the amyloid-positive subgroup. There were also significant inverse correlations between BF volumes and CL values, which again were most robust for BF total volume and the Ch4 subregion. CONCLUSIONS The results are consistent with the hypothesis that amyloid-positive SCD individuals, which are considered to represent a transitional stage on the clinical AD continuum, already show incipient alterations of BF integrity. The negative association with a continuous measure of cortical amyloid burden also suggests that this may reflect an incremental process. Yet, further research is needed to evaluate whether BF changes already emerge at "grey zone" levels of amyloid accumulation, before amyloidosis is reliably detected by PET visual readings.
Collapse
Affiliation(s)
- Marcel Daamen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lukas Scheef
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | - Shumei Li
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Ralph Buchert
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Ewers
- Institute for Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Ana Lucia Herrera Melendez
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center of Advanced Neuroimaging, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Matthias Reimold
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University, Tübingen, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ayda Rostamzadeh
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Wang Y, Zhan M, Roebroeck A, De Weerd P, Kashyap S, Roberts MJ. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 2022; 259:119421. [PMID: 35779763 DOI: 10.1016/j.neuroimage.2022.119421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
The nucleus basalis of Meynert (nbM) is the major source of cortical acetylcholine (ACh) and has been related to cognitive processes and to neurological disorders. However, spatially delineating the human nbM in MRI studies remains challenging. Due to the absence of a functional localiser for the human nbM, studies to date have localised it using nearby neuroanatomical landmarks or using probabilistic atlases. To understand the feasibility of MRI of the nbM we set our four goals; our first goal was to review current human nbM region-of-interest (ROI) selection protocols used in MRI studies, which we found have reported highly variable nbM volume estimates. Our next goal was to quantify and discuss the limitations of existing atlas-based volumetry of nbM. We found that the identified ROI volume depends heavily on the atlas used and on the probabilistic threshold set. In addition, we found large disparities even for data/studies using the same atlas and threshold. To test whether spatial resolution contributes to volume variability, as our third goal, we developed a novel nbM mask based on the normalized BigBrain dataset. We found that as long as the spatial resolution of the target data was 1.3 mm isotropic or above, our novel nbM mask offered realistic and stable volume estimates. Finally, as our last goal we tried to discern nbM using publicly available and novel high resolution structural MRI ex vivo MRI datasets. We find that, using an optimised 9.4T quantitative T2⁎ ex vivo dataset, the nbM can be visualised using MRI. We conclude caution is needed when applying the current methods of mapping nbM, especially for high resolution MRI data. Direct imaging of the nbM appears feasible and would eliminate the problems we identify, although further development is required to allow such imaging using standard (f)MRI scanning.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, Gif sur Yvette, France
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Techna Institute, University Health Network, Toronto, ON, Canada
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Perioperative neurocognitive disorders (PNDs) are among the most frequent complications after surgery and are associated with considerable morbidity and mortality. We analysed the recent literature regarding risk assessment of PND. RECENT FINDINGS Certain genetic variants of the cholinergic receptor muscarinic 2 and 4, as well as a marked degree of frailty but not the kind of anaesthesia (general or spinal) are associated with the risk to develop postoperative delirium (POD). Models predict POD with a discriminative power, for example, area under the receiver operating characteristics curve between 0.52 and 0.94. SUMMARY Advanced age as well as preexisting cognitive, functional and sensory deficits remain to be the main risk factors for the development of PND. Therefore, aged patients should be routinely examined for both preexisting and new developing deficits, as recommended in international guidelines. Appropriate tests should have a high discrimination rate, be feasible to be administered by staff that do not require excessive training, and only take a short time to be practical for a busy outpatient clinic. Models to predict PND, should be validated appropriately (and externally if possible) and should not contain a too large number of predictors to prevent overfitting of models.
Collapse
|
14
|
Xia Y, Eeles E, Fripp J, Pinsker D, Thomas P, Latter M, Doré V, Fazlollahi A, Bourgeat P, Villemagne VL, Coulson EJ, Rose S. Reduced cortical cholinergic innervation measured using [ 18F]-FEOBV PET imaging correlates with cognitive decline in mild cognitive impairment. Neuroimage Clin 2022; 34:102992. [PMID: 35344804 PMCID: PMC8958543 DOI: 10.1016/j.nicl.2022.102992] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Topographic FEOBV binding correlates with domain-specific cognitive performance. Global and regional reductions in cholinergic innervation are observed in MCI. Global FEOBV SUVR is associated with basal forebrain and hippocampal volumes. Our results provide proof of concept for FEOBV PET to assess cholinergic terminal integrity.
Dysfunction of the cholinergic basal forebrain (BF) neurotransmitter system, including cholinergic axon denervation of the cortex, plays an important role in cognitive decline and dementia. A validated method to directly quantify cortical cholinergic terminal integrity enables exploration of the involvement of this system in diverse cognitive profiles associated with dementia, particularly at a prodromal stage. In this study, we used the radiotracer [18F]-fluoroethoxybenzovesamicol (FEOBV) as a direct measure of cholinergic terminal integrity and investigated its value for the assessment of cholinergic denervation in the cortex and associated cognitive deficits. Eighteen participants (8 with mild cognitive impairment (MCI) and 10 cognitively unimpaired controls) underwent neuropsychological assessment and brain imaging using FEOBV and [18F]-florbetaben for amyloid-β imaging. The MCI group showed a significant global reduction of FEOBV retention in the cortex and in the parietal and occipital cortices specifically compared to the control group. The global cortical FEOBV retention of all participants positively correlated with the BF, hippocampus and grey matter volumes, but no association was found between the global FEOBV retention and amyloid-β status. Topographic profiles from voxel-wise analysis of FEOBV images revealed significant positive correlations with the cognitive domains associated with the underlying cortical areas. Overlapping profiles of decreased FEOBV were identified in correlation with impairment in executive function, attention and language, which covered the anterior cingulate gyrus, olfactory cortex, calcarine cortex, middle temporal gyrus and caudate nucleus. However, the absence of cortical atrophy in these areas suggested that reduced cholinergic terminal integrity in the cortex is an important factor underlying the observed cognitive decline in early dementia. Our results provide support for the utility and validity of FEOBV PET for quantitative assessment of region-specific cholinergic terminal integrity that could potentially be used for early detection of cholinergic dysfunction in dementia following further validation in larger cohorts.
Collapse
Affiliation(s)
- Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia.
| | - Eamonn Eeles
- Internal Medicine Service, The Prince Charles Hospital, Brisbane, QLD, Australia; School of Medicine, Northside Clinical School, The Prince Charles Hospital, Brisbane, QLD, Australia; Dementia & Neuro Mental Health Research Unit, UQCCR, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - Donna Pinsker
- Internal Medicine Service, The Prince Charles Hospital, Brisbane, QLD, Australia; School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Paul Thomas
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Melissa Latter
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Vincent Doré
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia; Austin Health, Melbourne, VIC, Australia
| | - Amir Fazlollahi
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - Victor L Villemagne
- Austin Health, Melbourne, VIC, Australia; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen Rose
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Pietschnig J, Gerdesmann D, Zeiler M, Voracek M. Of differing methods, disputed estimates and discordant interpretations: the meta-analytical multiverse of brain volume and IQ associations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211621. [PMID: 35573038 PMCID: PMC9096623 DOI: 10.1098/rsos.211621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Brain size and IQ are positively correlated. However, multiple meta-analyses have led to considerable differences in summary effect estimations, thus failing to provide a plausible effect estimate. Here we aim at resolving this issue by providing the largest meta-analysis and systematic review so far of the brain volume and IQ association (86 studies; 454 effect sizes from k = 194 independent samples; N = 26 000+) in three cognitive ability domains (full-scale, verbal, performance IQ). By means of competing meta-analytical approaches as well as combinatorial and specification curve analyses, we show that most reasonable estimates for the brain size and IQ link yield r-values in the mid-0.20s, with the most extreme specifications yielding rs of 0.10 and 0.37. Summary effects appeared to be somewhat inflated due to selective reporting, and cross-temporally decreasing effect sizes indicated a confounding decline effect, with three quarters of the summary effect estimations according to any reasonable specification not exceeding r = 0.26, thus contrasting effect sizes were observed in some prior related, but individual, meta-analytical specifications. Brain size and IQ associations yielded r = 0.24, with the strongest effects observed for more g-loaded tests and in healthy samples that generalize across participant sex and age bands.
Collapse
Affiliation(s)
- Jakob Pietschnig
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
| | - Daniel Gerdesmann
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
- Department of Physics Education, Faculty of Mathematics, Natural Sciences and Technology, University of Education Freiburg, Germany
| | - Michael Zeiler
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
16
|
Cammarata C, De Rosa ED. Interaction of cholinergic disruption and age on cognitive flexibility in rats. Exp Brain Res 2022; 240:2989-2997. [PMID: 36198843 PMCID: PMC9587929 DOI: 10.1007/s00221-022-06472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/25/2022] [Indexed: 01/24/2023]
Abstract
Healthy aging is associated with a functional reduction of the basal forebrain (BF) system that supplies the neurochemical acetylcholine (ACh) to the cortex, and concomitant challenges to cognition. It remains unclear how aging and ACh loss interact to shape cognition in the aging brain. We used a proactive interference (PI) odor discrimination task, shown to depend on the BF in young adults, wherein rats acquired new associations that conflicted with past learning or associations that did not conflict. This manipulation allowed independent assessment of encoding alone vs. encoding in the face of interference. Adult (9.8 ± 1.3 months) or aged male Long-Evans rats (20.7 ± 0.5 months) completed the PI task with systemic administration of a muscarinic cholinergic antagonist, scopolamine, or a pharmacological control. Aged rats were less able to resolve PI than adult rats. Moreover, while scopolamine reduced efficient PI resolution in adult rats, this cholinergic antagonism had no additional effect on aged rat performance, counter to our expectation that scopolamine would further increase perseveration in the aged group. Scopolamine did not impair encoding of non-interfering associations regardless of age. These data suggest that natural aging changes the effect of cholinergic pharmacology on encoding efficiency when past learning interferes.
Collapse
Affiliation(s)
- Celine Cammarata
- Department of Psychology, Cornell University, Ithaca, NY 14853 USA ,Human Neuroscience Institute, Cornell University, Ithaca, NY 14853 USA ,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Eve D. De Rosa
- Department of Psychology, Cornell University, Ithaca, NY 14853 USA ,Human Neuroscience Institute, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
17
|
The relationship between cholinergic system brain structure and function in healthy adults and patients with mild cognitive impairment. Sci Rep 2021; 11:16080. [PMID: 34373525 PMCID: PMC8352991 DOI: 10.1038/s41598-021-95573-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
We assessed the structure-function relationship of the human cholinergic system and hypothesized that structural measures are associated with short-latency sensory afferent inhibition (SAI), an electrophysiological measure of central cholinergic signal transmission. Healthy volunteers (n = 36) and patients with mild cognitive impairment (MCI, n = 20) underwent median nerve SAI and 3T structural MRI to determine the volume of the basal forebrain and the thalamus. Patients with MCI had smaller basal forebrain (p < 0.001) or thalamus volumes (p < 0.001) than healthy volunteers. Healthy SAI responders (> 10% SAI) had more basal forebrain volume than non-responders (p = 0.004) or patients with MCI (p < 0.001). More basal forebrain volume was associated with stronger SAI in healthy volunteers (r = 0.33, p < 0.05) but not patients with MCI. There was no significant relationship between thalamus volumes and SAI. Basal forebrain volume is associated with cholinergic function (SAI) in healthy volunteers but not in MCI patients. The in-vivo investigation of the structure-function relationship could further our understanding of the human cholinergic system in patients with suspected or known cholinergic system degeneration.
Collapse
|
18
|
Heinrich M, Müller A, Lammers-Lietz F, Borchers F, Mörgeli R, Kruppa J, Zacharias N, Winterer G, Slooter AJC, Spies CD. Radiological, Chemical, and Pharmacological Cholinergic System Parameters and Neurocognitive Disorders in Older Presurgical Adults. J Gerontol A Biol Sci Med Sci 2021; 76:1029-1036. [PMID: 32710543 DOI: 10.1093/gerona/glaa182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A pre-existing neurocognitive disorder (NCD) is a relevant factor for the outcome of surgical patients. To improve understanding of these conditions, we investigated the association between parameters of the cholinergic system and NCD. METHOD This investigation is part of the BioCog project (www.biocog.eu), which is a prospective multicenter observational study including patients aged 65 years and older scheduled for elective surgery. Patients with a Mini-Mental State Examination (MMSE) score ≤23 points were excluded. Neurocognitive disorder was assessed according to the fifth Diagnostic and Statistical Manual of Mental Disorders criteria. The basal forebrain cholinergic system volume (BFCSV) was assessed with magnetic resonance imaging, the peripheral cholinesterase (ChE) activities with point-of-care measurements, and anticholinergic load by analyzing the long-term medication with anticholinergic scales (Anticholinergic Drug Scale [ADS], Anticholinergic Risk Scale [ARS], Anticholinergic Cognitive Burden Scale [ACBS]). The associations of BFCSV, ChE activities, and anticholinergic scales with NCD were studied with logistic regression analysis, adjusting for confounding factors. RESULTS A total of 797 participants (mean age 72 years, 42% females) were included. One hundred and eleven patients (13.9%) fulfilled criteria for mild NCD and 82 patients (10.3%) for major NCD criteria. We found that AcetylChE activity was associated with major NCD (odds ratio [95% confidence interval]: [U/gHB] 1.061 [1.010, 1.115]), as well as ADS score ([points] 1.353 [1.063, 1.723]) or ARS score, respectively ([points] 1.623 [1.100, 2.397]) with major NCD. However, we found no association between BFCSV or ButyrylChE activity with mild or major NCD. CONCLUSIONS AcetylChE activity and anticholinergic load were associated with major NCD. Future research should focus on the association of the cholinergic system and the development of postoperative delirium and postoperative NCD.
Collapse
Affiliation(s)
- Maria Heinrich
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Berlin Institute of Health (BIH), Germany
| | - Anika Müller
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Florian Lammers-Lietz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Rudolf Mörgeli
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jochen Kruppa
- Berlin Institute of Health (BIH), Germany.,Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | | | - Arjen J C Slooter
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
19
|
Lammers F, Zacharias N, Borchers F, Mörgeli R, Spies CD, Winterer G. Functional Connectivity of the Supplementary Motor Network Is Associated with Fried's Modified Frailty Score in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:2239-2248. [PMID: 31900470 DOI: 10.1093/gerona/glz297] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Indexed: 01/22/2023] Open
Abstract
Frailty is a geriatric syndrome defined by coexistence of unintentional weight loss, low physical reserve, or activity and is associated with adverse health events. Neuroimaging studies reported structural white matter changes in frail patients. In the current study, we hypothesized that clinical frailty is associated also with functional changes in motion-related cortical areas, that is, (pre-)supplementary motor areas (SMA, pre-SMA). We expected that observed functional changes are related to motor-cognitive test performance. We studied a clinical sample of 143 cognitively healthy patients ≥65 years presenting for elective surgery, enrolled in the BioCog prospective multicentric cohort study on postoperative cognitive disorders. Participants underwent preoperative resting-state functional magnetic resonance imaging, motor-cognitive testing, and assessment of Fried's modified frailty criteria. We analyzed functional connectivity associations with frailty and motor-cognitive test performance. Clinically robust patients (N = 60) showed higher connectivity in the SMA network compared to frail (N = 13) and prefrail (N = 70) patients. No changes were found in the pre-SMA network. SMA connectivity correlated with motor speed (Trail-Making-Test A) and manual dexterity (Grooved Pegboard Test). Our results suggest that diminished functional connectivity of the SMA is an early correlate of functional decline in the older adults . The SMA may serve as a potential treatment target in frailty.
Collapse
Affiliation(s)
- Florian Lammers
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Norman Zacharias
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Friedrich Borchers
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Rudolf Mörgeli
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Claudia Doris Spies
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Georg Winterer
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
20
|
Dezawa S, Nagasaka K, Watanabe Y, Takashima I. Lesions of the nucleus basalis magnocellularis (Meynert) induce enhanced somatosensory responses and tactile hypersensitivity in rats. Exp Neurol 2020; 335:113493. [PMID: 33011194 DOI: 10.1016/j.expneurol.2020.113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
We used the immunotoxin 192 immunoglobulin G-saporin to produce a selective cholinergic lesion in the nucleus basalis of Meynert (NBM) of rats and investigated whether the NBM lesion led to tactile hypersensitivity in the forepaw. The paw mechanical threshold test showed that the lesioned rats had a decreased threshold compared to the control. Surprisingly, there was a significant positive correlation between mechanical threshold and survival rate of NBM cholinergic neurons. Furthermore, using local field potential (LFP) recordings and voltage-sensitive dye (VSD) imaging, we found that the forepaw-evoked response in the primary somatosensory cortex (S1) was significantly enhanced in both amplitude and spatial extent in the NBM-lesioned rats. The neurophysiological measures of S1 response, such as LFP amplitude and maximal activated cortical area depicted by VSD, were also correlated with withdrawal behavior. Additional pharmacological experiments demonstrated that forepaw-evoked responses were increased in naive rats by blocking S1 cholinergic receptors with mecamylamine and scopolamine, while the response decreased in NBM-lesioned rats with the cholinergic agonist carbachol. In addition, NBM burst stimulation, which facilitates acetylcholine release in the S1, suppressed subsequent sensory responses to forepaw stimulation. Taken together, these results suggest that neuronal loss in the NBM diminishes acetylcholine actions in the S1, thereby enhancing the cortical representation of sensory stimuli, which may in turn lead to behavioral hypersensitivity.
Collapse
Affiliation(s)
- Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
21
|
Nemy M, Cedres N, Grothe MJ, Muehlboeck JS, Lindberg O, Nedelska Z, Stepankova O, Vyslouzilova L, Eriksdotter M, Barroso J, Teipel S, Westman E, Ferreira D. Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert. Neuroimage 2020; 211:116607. [PMID: 32035186 DOI: 10.1016/j.neuroimage.2020.116607] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
The integrity of the cholinergic system plays a central role in cognitive decline both in normal aging and neurological disorders including Alzheimer's disease and vascular cognitive impairment. Most of the previous neuroimaging research has focused on the integrity of the cholinergic basal forebrain, or its sub-region the nucleus basalis of Meynert (NBM). Tractography using diffusion tensor imaging data may enable modelling of the NBM white matter projections. We investigated the contribution of NBM volume, NBM white matter projections, small vessel disease (SVD), and age to performance in attention and memory in 262 cognitively normal individuals (39-77 years of age, 53% female). We developed a multimodal MRI pipeline for NBM segmentation and diffusion-based tracking of NBM white matter projections, and computed white matter hypointensities (WM-hypo) as a marker of SVD. We successfully tracked pathways that closely resemble the spatial layout of the cholinergic system as seen in previous post-mortem and DTI tractography studies. We found that high WM-hypo load was associated with older age, male sex, and lower performance in attention and memory. A high WM-hypo load was also associated with lower integrity of the cholinergic system above and beyond the effect of age. In a multivariate model, age and integrity of NBM white matter projections were stronger contributors than WM-hypo load and NBM volume to performance in attention and memory. We conclude that the integrity of NBM white matter projections plays a fundamental role in cognitive aging. This and other modern neuroimaging methods offer new opportunities to re-evaluate the cholinergic hypothesis of cognitive aging.
Collapse
Affiliation(s)
- Milan Nemy
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - Nira Cedres
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Faculty of Psychology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Michel J Grothe
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, Prague, Czech Republic
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, Prague, Czech Republic
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - José Barroso
- Faculty of Psychology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Stefan Teipel
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Faculty of Psychology, University of La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
22
|
Feinkohl I, Borchers F, Burkhardt S, Krampe H, Kraft A, Speidel S, Kant IMJ, van Montfort SJT, Aarts E, Kruppa J, Slooter A, Winterer G, Pischon T, Spies C. Stability of neuropsychological test performance in older adults serving as normative controls for a study on postoperative cognitive dysfunction. BMC Res Notes 2020; 13:55. [PMID: 32019577 PMCID: PMC7001199 DOI: 10.1186/s13104-020-4919-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Studies of postoperative cognitive dysfunction (POCD) rely on repeat neuropsychological testing. The stability of the applied instruments, which are affected by natural variability in performance and measurement imprecision, is often unclear. We determined the stability of a neuropsychological test battery using a sample of older adults from the general population. Forty-five participants aged 65 to 89 years performed six computerized and non-computerized neuropsychological tests at baseline and again at 7 day and 3 months follow-up sessions. Mean scores on each test were compared across time points using repeated measures analyses of variance (ANOVA) with pairwise comparison. Two-way mixed effects, absolute agreement analyses of variance intra-class correlation coefficients (ICC) determined test-retest reliability. RESULTS All tests had moderate to excellent test-retest reliability during 7-day (ICC range 0.63 to 0.94; all p < 0.01) and 3-month intervals (ICC range 0.60 to 0.92; all p < 0.01) though confidence intervals of ICC estimates were large throughout. Practice effects apparent at 7 days eased off by 3 months. No substantial differences between computerized and non-computerized tests were observed. We conclude that the present six-test neuropsychological test battery is appropriate for use in POCD research though small sample size of our study needs to be recognized as a limitation. Trial registration ClinicalTrials.gov Identifier NCT02265263 (15th October 2014).
Collapse
Affiliation(s)
- Insa Feinkohl
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Roessle-Str. 10, 13092, Berlin, Germany.
| | - Friedrich Borchers
- Department of Anesthesiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sarah Burkhardt
- Faculty of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Henning Krampe
- Department of Anesthesiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Antje Kraft
- Department of Psychiatry, Psychiatric University Hospital St. Hedwig, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Saya Speidel
- Department of Anesthesiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ilse M J Kant
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Simone J T van Montfort
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen Aarts
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jochen Kruppa
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Arjen Slooter
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Georg Winterer
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Roessle-Str. 10, 13092, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,MDC/BIH Biobank, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), and Berlin Institute of Health (BIH), Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Koch S, Feinkohl I, Chakravarty S, Windmann V, Lichtner G, Pischon T, Brown EN, Spies C. Cognitive Impairment Is Associated with Absolute Intraoperative Frontal α-Band Power but Not with Baseline α-Band Power: A Pilot Study. Dement Geriatr Cogn Disord 2019; 48:83-92. [PMID: 31578031 PMCID: PMC7367434 DOI: 10.1159/000502950] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cognitive abilities decline with aging, leading to a higher risk for the development of postoperative delirium or postoperative neurocognitive disorders after general anesthesia. Since frontal α-band power is known to be highly correlated with cognitive function in general, we hypothesized that preoperative cognitive impairment is associated with lower baseline and intraoperative frontal α-band power in older adults. METHODS Patients aged ≥65 years undergoing elective surgery were included in this prospective observational study. Cognitive function was assessed on the day before surgery using six age-sensitive cognitive tests. Scores on those tests were entered into a principal component analysis to calculate a composite "g score" of global cognitive ability. Patient groups were dichotomized into a lower cognitive group (LC) reaching the lower 1/3 of "g scores" and a normal cognitive group (NC) consisting of the upper 2/3 of "g scores." Continuous pre- and intraoperative frontal electroencephalograms (EEGs) were recorded. EEG spectra were analyzed at baseline, before start of anesthesia medication, and during a stable intraoperative period. Significant differences in band power between the NC and LC groups were computed by using a frequency domain (δ 0.5-3 Hz, θ 4-7 Hz, α 8-12 Hz, β 13-30 Hz)-based bootstrapping algorithm. RESULTS Of 38 included patients (mean age 72 years), 24 patients were in the NC group, and 14 patients had lower cognitive abilities (LC). Intraoperative α-band power was significantly reduced in the LC group compared to the NC group (NC -1.6 [-4.48/1.17] dB vs. LC -6.0 [-9.02/-2.64] dB), and intraoperative α-band power was positively correlated with "g score" (Spearman correlation: r = 0.381; p = 0.018). Baseline EEG power did not show any associations with "g." CONCLUSIONS Preoperative cognitive impairment in older adults is associated with intraoperative absolute frontal α-band power, but not baseline α-band power.
Collapse
Affiliation(s)
- Susanne Koch
- Department of Anaesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany, .,Berlin Institute of Health (BIH), Berlin, Germany,
| | - Insa Feinkohl
- Molecular Epidemiology Research Group, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Victoria Windmann
- Department of Anaesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Gregor Lichtner
- Department of Anaesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Tobias Pischon
- Berlin Institute of Health (BIH), Berlin, Germany;,Molecular Epidemiology Research Group, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany;,MDC/BIH Biobank, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Emery N. Brown
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA;,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA;,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA;,Institute for Data, Systems and Society, MIT, Cambridge, MA, USA;,Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, MA, USA;,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Claudia Spies
- Department of Anaesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | | |
Collapse
|