1
|
Roy A, Girija VS. Inceptive Investigation of Audio-Visual Homogenization on Dissociative Neurological Symptoms. Percept Mot Skills 2025:315125251337505. [PMID: 40258585 DOI: 10.1177/00315125251337505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Dissociative neurological symptom disorder, also called functional neurological symptom disorder or conversion disorder, presents characteristics that are incongruent with medical or neurological conditions. This study investigates whether sensory exposure to red light and white noise can trigger dissociative and conversion symptoms. Consequently, the reported somatosensory alterations significantly challenge current diagnostic protocols. In this study, we record inceptive evidence of conversion symptoms from a sample of 61 healthy university students who reported dissociative states after the Ganzfeld audio-visual homogenization condition. In the Ganzfeld condition, individuals experienced increased conversion and decreased depersonalization when red light and white noise were used as stimuli. Our findings correlate with those of previous studies that highlighted red light's ability to significantly trigger negative effects. Simultaneously, we found that the multimodal Ganzfeld condition may decrease identity confusion. Additionally, dissociative states among these participants were consistent with trauma symptoms, emphasizing the predispositions that may impact executive functioning. We further highlight that the somatosensory alterations may be a result of endogenous and exogenous attentional orientation. This investigation elucidated potential triggers and effects of conversion symptoms that could be important for understanding dissociative psychopathology.
Collapse
Affiliation(s)
- Anney Roy
- First Faculty of Medicine, Charles University and General University Hospital in Prague (VFN), Praha, Czech Republic
| | | |
Collapse
|
2
|
Reeder RR, Sala G, van Leeuwen TM. A novel model of divergent predictive perception. Neurosci Conscious 2024; 2024:niae006. [PMID: 38348335 PMCID: PMC10860603 DOI: 10.1093/nc/niae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Predictive processing theories state that our subjective experience of reality is shaped by a balance of expectations based on previous knowledge about the world (i.e. priors) and confidence in sensory input from the environment. Divergent experiences (e.g. hallucinations and synaesthesia) are likely to occur when there is an imbalance between one's reliance on priors and sensory input. In a novel theoretical model, inspired by both predictive processing and psychological principles, we propose that predictable divergent experiences are associated with natural or environmentally induced prior/sensory imbalances: inappropriately strong or inflexible (i.e. maladaptive) high-level priors (beliefs) combined with low sensory confidence can result in reality discrimination issues, a characteristic of psychosis; maladaptive low-level priors (sensory expectations) combined with high sensory confidence can result in atypical sensory sensitivities and persistent divergent percepts, a characteristic of synaesthesia. Crucially, we propose that whether different divergent experiences manifest with dominantly sensory (e.g. hallucinations) or nonsensory characteristics (e.g. delusions) depends on mental imagery ability, which is a spectrum from aphantasia (absent or weak imagery) to hyperphantasia (extremely vivid imagery). We theorize that imagery is critically involved in shaping the sensory richness of divergent perceptual experience. In sum, to predict a range of divergent perceptual experiences in both clinical and general populations, three factors must be accounted for: a maladaptive use of priors, individual level of confidence in sensory input, and mental imagery ability. These ideas can be expressed formally using nonparametric regression modeling. We provide evidence for our theory from previous work and deliver predictions for future research.
Collapse
Affiliation(s)
- Reshanne R Reeder
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Giovanni Sala
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tessa M van Leeuwen
- Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Shenyan O, Lisi M, Greenwood JA, Skipper JI, Dekker TM. Visual hallucinations induced by Ganzflicker and Ganzfeld differ in frequency, complexity, and content. Sci Rep 2024; 14:2353. [PMID: 38287084 PMCID: PMC10825158 DOI: 10.1038/s41598-024-52372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Visual hallucinations can be phenomenologically divided into those of a simple or complex nature. Both simple and complex hallucinations can occur in pathological and non-pathological states, and can also be induced experimentally by visual stimulation or deprivation-for example using a high-frequency, eyes-open flicker (Ganzflicker) and perceptual deprivation (Ganzfeld). Here we leverage the differences in visual stimulation that these two techniques involve to investigate the role of bottom-up and top-down processes in shifting the complexity of visual hallucinations, and to assess whether these techniques involve a shared underlying hallucinatory mechanism despite their differences. For each technique, we measured the frequency and complexity of the hallucinations produced, utilising button presses, retrospective drawing, interviews, and questionnaires. For both experimental techniques, simple hallucinations were more common than complex hallucinations. Crucially, we found that Ganzflicker was more effective than Ganzfeld at eliciting simple hallucinations, while complex hallucinations remained equivalent across the two conditions. As a result, the likelihood that an experienced hallucination was complex was higher during Ganzfeld. Despite these differences, we found a correlation between the frequency and total time spent hallucinating in Ganzflicker and Ganzfeld conditions, suggesting some shared mechanisms between the two methodologies. We attribute the tendency to experience frequent simple hallucinations in both conditions to a shared low-level core hallucinatory mechanism, such as excitability of visual cortex, potentially amplified in Ganzflicker compared to Ganzfeld due to heightened bottom-up input. The tendency to experience complex hallucinations, in contrast, may be related to top-down processes less affected by visual stimulation.
Collapse
Affiliation(s)
- Oris Shenyan
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
| | - Matteo Lisi
- Department of Psychology, Royal Holloway University, London, UK
| | - John A Greenwood
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Jeremy I Skipper
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Tessa M Dekker
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Zandbagleh A, Mirzakuchaki S, Daliri MR, Sumich A, Anderson JD, Sanei S. Graph-based analysis of EEG for schizotypy classification applying flicker Ganzfeld stimulation. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:64. [PMID: 37735164 PMCID: PMC10514040 DOI: 10.1038/s41537-023-00395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Ganzfeld conditions induce alterations in brain function and pseudo-hallucinatory experiences, particularly in people with high positive schizotypy. The current study uses graph-based parameters to investigate and classify brain networks under Ganzfeld conditions as a function of positive schizotypy. Participants from the general population (14 high schizotypy (HS), 29 low schizotypy (LS)) had an electroencephalography assessment during Ganzfeld conditions, with varying visual activation (8 frequencies of random light flicker) and soundscape-induced mood (neutral, serenity, and anxiety). Weighted functional networks were computed in six frequency sub-bands (delta, theta, alpha-low, alpha-high, beta, and gamma) as a function of light-flicker frequency and mood. The brain network was analyzed using graph theory parameters, including clustering coefficient (CC), strength, and global efficiency (GE). It was found that the LS groups had higher CC and strength than the HS groups, especially in bilateral temporal and frontotemporal brain regions. Moreover, some decreases in CC and strength measures were found in LS groups among occipital and parieto-occipital brain regions. LS groups also had significantly higher GE in all Ganzfeld conditions compared to the HS groups. The random under-sampling boosting (RUSBoost) algorithm achieved the best classification performance with an accuracy of 95.34%, specificity of 96.55%, and sensitivity of 92.85% during an anxiety-induction Ganzfeld condition. This is the first exploration of the relationship between brain functional state changes under Ganzfeld conditions in individuals who vary in positive schizotypy. The accuracy of graph-based parameters in classifying brain states as a function of schizotypy is shown, particularly for brain activity during anxiety induction, and should be investigated in psychosis.
Collapse
Affiliation(s)
- Ahmad Zandbagleh
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sattar Mirzakuchaki
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Mohammad Reza Daliri
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Alexander Sumich
- Division of Psychology, Nottingham Trent University, Main Campus, Nottingham, UK
| | - John D Anderson
- Division of Psychology, Nottingham Trent University, Main Campus, Nottingham, UK
| | - Saeid Sanei
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| |
Collapse
|
5
|
Blanco S, Mitra S, Howard C, Sumich A. Psychological trauma, mood and social isolation do not explain elevated dissociation in functional neurological disorder (FND). PERSONALITY AND INDIVIDUAL DIFFERENCES 2023. [DOI: 10.1016/j.paid.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Salge JH, Pollmann S, Reeder RR. Anomalous visual experience is linked to perceptual uncertainty and visual imagery vividness. PSYCHOLOGICAL RESEARCH 2021; 85:1848-1865. [PMID: 32476064 PMCID: PMC8289756 DOI: 10.1007/s00426-020-01364-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/20/2020] [Indexed: 11/29/2022]
Abstract
An imbalance between top-down and bottom-up processing on perception (specifically, over-reliance on top-down processing) can lead to anomalous perception, such as illusions. One factor that may be involved in anomalous perception is visual mental imagery, which is the experience of "seeing" with the mind's eye. There are vast individual differences in self-reported imagery vividness, and more vivid imagery is linked to a more sensory-like experience. We, therefore, hypothesized that susceptibility to anomalous perception is linked to individual imagery vividness. To investigate this, we adopted a paradigm that is known to elicit the perception of faces in pure visual noise (pareidolia). In four experiments, we explored how imagery vividness contributes to this experience under different response instructions and environments. We found strong evidence that people with more vivid imagery were more likely to see faces in the noise, although removing suggestive instructions weakened this relationship. Analyses from the first two experiments led us to explore confidence as another factor in pareidolia proneness. We, therefore, modulated environment noise and added a confidence rating in a novel design. We found strong evidence that pareidolia proneness is correlated with uncertainty about real percepts. Decreasing perceptual ambiguity abolished the relationship between pareidolia proneness and both imagery vividness and confidence. The results cannot be explained by incidental face-like patterns in the noise, individual variations in response bias, perceptual sensitivity, subjective perceptual thresholds, viewing distance, testing environments, motivation, gender, or prosopagnosia. This indicates a critical role of mental imagery vividness and perceptual uncertainty in anomalous perceptual experience.
Collapse
Affiliation(s)
- Johannes H Salge
- Department of Experimental Psychology, Institute of Psychology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Stefan Pollmann
- Department of Experimental Psychology, Institute of Psychology, Otto-Von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Reshanne R Reeder
- Department of Experimental Psychology, Institute of Psychology, Otto-Von-Guericke University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
7
|
Königsmark VT, Bergmann J, Reeder RR. The Ganzflicker experience: High probability of seeing vivid and complex pseudo-hallucinations with imagery but not aphantasia. Cortex 2021; 141:522-534. [PMID: 34172274 DOI: 10.1016/j.cortex.2021.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/02/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
There are considerable individual differences in visual mental imagery ability across the general population, including a "blind mind's eye", or aphantasia. Recent studies have shown that imagery is linked to differences in perception in the healthy population, and clinical work has found a connection between imagery and hallucinatory experiences in neurological disorders. However, whether imagery ability is associated with anomalous perception-including hallucinations-in the general population remains unclear. In the current study, we explored the relationship between imagery ability and the anomalous perception of pseudo-hallucinations (PH) using rhythmic flicker stimulation ("Ganzflicker"). Specifically, we investigated whether the ability to generate voluntary imagery is associated with susceptibility to flicker-induced PH. We additionally explored individual differences in observed features of PH. We recruited a sample of people with aphantasia (aphants) and imagery (imagers) to view a constant red-and-black flicker for approximately 10 min. We found that imagers were more susceptible to PH, and saw more complex and vivid PH, compared to aphants. This study provides the first evidence that the ability to generate visual imagery increases the likelihood of experiencing complex and vivid anomalous percepts.
Collapse
Affiliation(s)
- Varg T Königsmark
- Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johanna Bergmann
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Reshanne R Reeder
- Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Psychology, Edge Hill University, Ormskirk, UK.
| |
Collapse
|
8
|
Stacey JE, Crook-Rumsey M, Sumich A, Howard CJ, Crawford T, Livne K, Lenzoni S, Badham S. Age differences in resting state EEG and their relation to eye movements and cognitive performance. Neuropsychologia 2021; 157:107887. [PMID: 33974956 DOI: 10.1016/j.neuropsychologia.2021.107887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022]
Abstract
Prior research has focused on EEG differences across age or EEG differences across cognitive tasks/eye tracking. There are few studies linking age differences in EEG to age differences in behavioural performance which is necessary to establish how neuroactivity corresponds to successful and impaired ageing. Eighty-six healthy participants completed a battery of cognitive tests and eye-tracking measures. Resting state EEG (n = 75, 31 young, 44 older adults) was measured for delta, theta, alpha and beta power as well as for alpha peak frequency. Age deficits in cognition were aligned with the literature, showing working memory and inhibitory deficits along with an older adult advantage in vocabulary. Older adults showed poorer eye movement accuracy and response times, but we did not replicate literature showing a greater age deficit for antisaccades than for prosaccades. We replicated EEG literature showing lower alpha peak frequency in older adults but not literature showing lower alpha power. Older adults also showed higher beta power and less parietal alpha power asymmetry than young adults. Interaction effects showed that better prosaccade performance was related to lower beta power in young adults but not in older adults. Performance at the trail making test part B (measuring task switching and inhibition) was improved for older adults with higher resting state delta power but did not depend on delta power for young adults. It is argued that individuals with higher slow-wave resting EEG may be more resilient to age deficits in tasks that utilise cross-cortical processing.
Collapse
Affiliation(s)
- Jemaine E Stacey
- Department of Psychology, Nottingham Trent University, UK; Nottingham Biomedical Research Centre, University of Nottingham, UK
| | - Mark Crook-Rumsey
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Alexander Sumich
- Department of Psychology, Nottingham Trent University, UK; Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Kinneret Livne
- Department of Psychology, Nottingham Trent University, UK
| | - Sabrina Lenzoni
- Department of Psychology, Nottingham Trent University, UK; Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Brazil
| | - Stephen Badham
- Department of Psychology, Nottingham Trent University, UK.
| |
Collapse
|
9
|
Carr P. The value of visioning: Augmenting EMDR with alpha-band alternating bilateral photic stimulation for trauma treatment in schizophrenia. Med Hypotheses 2020; 144:110184. [DOI: 10.1016/j.mehy.2020.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
|
10
|
Miskovic V, Bagg JO, Ríos M, Pouliot JJ. Electrophysiological and phenomenological effects of short-term immersion in an altered sensory environment. Conscious Cogn 2019; 70:39-49. [PMID: 30826717 DOI: 10.1016/j.concog.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/15/2022]
Abstract
We examined the spontaneous cerebral electrophysiology and phenomenology during short-term perceptual deprivation consisting of an edgeless visual field combined with monotonous auditory input that eliminated potential grounding cues (multimodal Ganzfeld). Subjects (N = 22) were instructed to self-report perceptual fading using a button press. Relaxed wakefulness with closed eyes and viewing of a time-varying stimulus array served as control conditions. The power of parieto-occipital alpha rhythms during perceptual deprivation was midway between the eyes-closed and eyes-open conditions, with a state-specific frequency acceleration. Oscillatory alpha power remained enhanced in the multimodal Ganzfeld relative to viewing time-varying signals, despite no indication of diminished brain arousal. Subjects experienced a range of perceptual phenomena while in the altered sensory environment and individuals with faster alpha oscillations self-reported a greater number of fading episodes. We suggest that alpha-band electroencephalogram (EEG) dynamics signal internally oriented mentation in response to brief perceptual deprivation.
Collapse
Affiliation(s)
- Vladimir Miskovic
- Department of Psychology, State University of New York at Binghamton, United States.
| | - Jeffrey O Bagg
- Department of Psychology, State University of New York at Binghamton, United States
| | - Matthew Ríos
- Department of Psychology, State University of New York at Binghamton, United States
| | - Jourdan J Pouliot
- Department of Psychology, State University of New York at Binghamton, United States
| |
Collapse
|