1
|
Meltzer JA, Sivaratnam G, Deschamps T, Zadeh M, Li C, Farzan F, Francois-Nienaber A. Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements. FRONTIERS IN NEUROIMAGING 2024; 3:1341732. [PMID: 38379832 PMCID: PMC10875011 DOI: 10.3389/fnimg.2024.1341732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Introduction Protocols for noninvasive brain stimulation (NIBS) are generally categorized as "excitatory" or "inhibitory" based on their ability to produce short-term modulation of motor-evoked potentials (MEPs) in peripheral muscles, when applied to motor cortex. Anodal and cathodal stimulation are widely considered excitatory and inhibitory, respectively, on this basis. However, it is poorly understood whether such polarity-dependent changes apply for neural signals generated during task performance, at rest, or in response to sensory stimulation. Methods To characterize such changes, we measured spontaneous and movement-related neural activity with magnetoencephalography (MEG) before and after high-definition transcranial direct-current stimulation (HD-TDCS) of the left motor cortex (M1), while participants performed simple finger movements with the left and right hands. Results Anodal HD-TDCS (excitatory) decreased the movement-related cortical fields (MRCF) localized to left M1 during contralateral right finger movements while cathodal HD-TDCS (inhibitory), increased them. In contrast, oscillatory signatures of voluntary motor output were not differentially affected by the two stimulation protocols, and tended to decrease in magnitude over the course of the experiment regardless. Spontaneous resting state oscillations were not affected either. Discussion MRCFs are thought to reflect reafferent proprioceptive input to motor cortex following movements. Thus, these results suggest that processing of incoming sensory information may be affected by TDCS in a polarity-dependent manner that is opposite that seen for MEPs-increases in cortical excitability as defined by MEPs may correspond to reduced responses to afferent input, and vice-versa.
Collapse
Affiliation(s)
- Jed A. Meltzer
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Departments of Psychology and Speech-language Pathology, University of Toronto, Toronto, ON, Canada
| | - Gayatri Sivaratnam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Maryam Zadeh
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Catherine Li
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada
| | - Alex Francois-Nienaber
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| |
Collapse
|
2
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Molero-Chamizo A, Nitsche MA, Gutiérrez Lérida C, Salas Sánchez Á, Martín Riquel R, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches. BIOLOGY 2021; 10:1230. [PMID: 34943145 PMCID: PMC8698402 DOI: 10.3390/biology10121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | | | - Ángeles Salas Sánchez
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Raquel Martín Riquel
- Department of Psychology, University of Córdoba, 14071 Córdoba, Spain; (C.G.L.); (R.M.R.)
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - José Ramón Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|
4
|
Transcranial direct current stimulation (tDCS) effects on attention enhancement: A preliminary event related potential (ERP) study. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02190-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Hanenberg C, Schlüter MC, Getzmann S, Lewald J. Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention. Front Neurosci 2021; 15:645702. [PMID: 34276281 PMCID: PMC8280319 DOI: 10.3389/fnins.2021.645702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker ("cocktail-party") scenario. Forty-five healthy participants were tested, including younger (19-29 years; n = 21) and older (66-76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under "cocktail-party" conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under "cocktail-party" conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.
Collapse
Affiliation(s)
| | | | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörg Lewald
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Zaehle T. Frontal Transcranial Direct Current Stimulation as a Potential Treatment of Parkinson's Disease-Related Fatigue. Brain Sci 2021; 11:brainsci11040467. [PMID: 33917684 PMCID: PMC8068015 DOI: 10.3390/brainsci11040467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
In contrast to motor symptoms, non-motor symptoms in Parkinson’s disease (PD) are often poorly recognized and inadequately treated. Fatigue is one of the most common non-motor symptoms in PD and affects a broad range of everyday activities, causes disability, and substantially reduces the quality of life. It occurs at every stage of PD, and once present, it often persists and worsens over time. PD patients attending the 2013 World Parkinson Congress voted fatigue as the leading symptom in need of further research. However, despite its clinical significance, little progress has been made in understanding the causes of Parkinson’s disease-related fatigue (PDRF) and developing effective treatment options, which argues strongly for a greater effort. Transcranial direct current stimulation (tDCS) is a technique to non-invasively modulate cortical excitability by delivering low electrical currents to the cerebral cortex. In the past, it has been consistently evidenced that tDCS has the ability to induce neuromodulatory changes in the motor, sensory, and cognitive domains. Importantly, recent data present tDCS over the frontal cortex as an effective therapeutic option to treat fatigue in patients suffering from multiple sclerosis (MS). The current opinion paper reviews recent data on PDRF and the application of tDCS for the treatment of fatigue in neuropsychiatric disorders to further develop an idea of using frontal anodal tDCS as a potential therapeutic strategy to alleviate one of the most common and severe non-motor symptoms of PD.
Collapse
Affiliation(s)
- Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
7
|
Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study. Sci Rep 2020; 10:20111. [PMID: 33208867 PMCID: PMC7674467 DOI: 10.1038/s41598-020-77111-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the most prominent non-invasive electrical brain stimulation method to alter neuronal activity as well as behavioral processes in cognitive and perceptual domains. However, the exact mode of action of tDCS-related cortical alterations is still unclear as the results of tDCS studies often do not comply with the somatic doctrine assuming that anodal tDCS enhances while cathodal tDCS decreases neuronal excitability. Changes in the regional cortical neurotransmitter balance within the stimulated cortex, measured by excitatory and inhibitory neurotransmitter levels, have the potential to provide direct neurochemical underpinnings of tDCS effects. Here we assessed tDCS-induced modulations of the neurotransmitter concentrations in the human auditory cortex (AC) by using magnetic resonance spectroscopy (MRS) at ultra-high-field (7 T). We quantified inhibitory gamma-amino butyric (GABA) concentration and excitatory glutamate (Glu) and compared changes in the relative concentration of GABA to Glu before and after tDCS application. We found that both, anodal and cathodal tDCS significantly increased the relative concentration of GABA to Glu with individual temporal specificity. Our results offer novel insights for a potential neurochemical mechanism that underlies tDCS-induced alterations of AC processing.
Collapse
|
8
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
9
|
Gilissen SR, Arckens L. Posterior parietal cortex contributions to cross-modal brain plasticity upon sensory loss. Curr Opin Neurobiol 2020; 67:16-25. [PMID: 32777707 DOI: 10.1016/j.conb.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Sensory loss causes compensatory behavior, like echolocation upon vision loss or improved visual motion detection upon deafness. This is enabled by recruitment of the deprived cortical area by the intact senses. Such cross-modal plasticity can however hamper rehabilitation via sensory substitution devices. To steer rehabilitation towards the desired outcome for the patient, having control over the cross-modal take-over is essential. Evidence accumulates to support a role for the posterior parietal cortex (PPC) in multimodal plasticity. This area shows increased activity after sensory loss, keeping similar functions but driven by other senses. Patient-specific factors like stress, social situation, age and attention, have a significant influence on the PPC and on cross-modal plasticity. We propose that understanding the response of the PPC to sensory loss and context is extremely important for determining the best possible implant-based therapies, and that mouse research holds potential to help unraveling the underlying anatomical, cellular and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Sara Rj Gilissen
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Klatt LI, Schneider D, Schubert AL, Hanenberg C, Lewald J, Wascher E, Getzmann S. Unraveling the Relation between EEG Correlates of Attentional Orienting and Sound Localization Performance: A Diffusion Model Approach. J Cogn Neurosci 2020; 32:945-962. [PMID: 31933435 DOI: 10.1162/jocn_a_01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the contribution of cognitive processes and their underlying neurophysiological signals to behavioral phenomena has been a key objective in recent neuroscience research. Using a diffusion model framework, we investigated to what extent well-established correlates of spatial attention in the electroencephalogram contribute to behavioral performance in an auditory free-field sound localization task. Younger and older participants were instructed to indicate the horizontal position of a predefined target among three simultaneously presented distractors. The central question of interest was whether posterior alpha lateralization and amplitudes of the anterior contralateral N2 subcomponent (N2ac) predict sound localization performance (accuracy, mean RT) and/or diffusion model parameters (drift rate, boundary separation, non-decision time). Two age groups were compared to explore whether, in older adults (who struggle with multispeaker environments), the brain-behavior relationship would differ from younger adults. Regression analyses revealed that N2ac amplitudes predicted drift rate and accuracy, whereas alpha lateralization was not related to behavioral or diffusion modeling parameters. This was true irrespective of age. The results indicate that a more efficient attentional filtering and selection of information within an auditory scene, reflected by increased N2ac amplitudes, was associated with a higher speed of information uptake (drift rate) and better localization performance (accuracy), while the underlying response criteria (threshold separation), mean RTs, and non-decisional processes remained unaffected. The lack of a behavioral correlate of poststimulus alpha power lateralization constrasts with the well-established notion that prestimulus alpha power reflects a functionally relevant attentional mechanism. This highlights the importance of distinguishing anticipatory from poststimulus alpha power modulations.
Collapse
Affiliation(s)
| | - Daniel Schneider
- Leibniz Research Centre for Working Environment and Human Factors
| | | | | | - Jörg Lewald
- Leibniz Research Centre for Working Environment and Human Factors.,Ruhr-University Bochum
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors
| |
Collapse
|
11
|
Deng Y, Reinhart RMG, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. eLife 2019; 8:e51184. [PMID: 31782732 PMCID: PMC6904218 DOI: 10.7554/elife.51184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. However, there is no evidence that parietal alpha controls auditory spatial attention. Here, we performed high definition transcranial alternating current stimulation (HD-tACS) on human subjects performing an auditory task in which they directed attention based on either spatial or nonspatial features. Alpha (10 Hz) but not theta (6 Hz) HD-tACS of right parietal cortex interfered with attending left but not right auditory space. Parietal stimulation had no effect for nonspatial auditory attention. Moreover, performance in post-stimulation trials returned rapidly to baseline. These results demonstrate a causal, frequency-, hemispheric-, and task-specific effect of parietal alpha brain stimulation on top-down control of auditory spatial attention.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical EngineeringBoston UniversityBostonUnited States
| | | | - Inyong Choi
- Communication Sciences and DisordersUniversity of IowaIowa CityUnited States
| | - Barbara G Shinn-Cunningham
- Biomedical EngineeringBoston UniversityBostonUnited States
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|