1
|
Nogueira PA, Neiva JF, Couto MP, Giglio MV, Maldaun MVC, Joaquim AF, Ghizoni E, Formentin C. From classic models to new pathways: unraveling the anatomy and function of the inferior fronto-occipital fasciculus in language processing. Front Psychol 2025; 16:1561482. [PMID: 40242731 PMCID: PMC11999949 DOI: 10.3389/fpsyg.2025.1561482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction This study explores the anatomy and function of the inferior fronto-occipital fasciculus (IFOF), focusing on its role in language processing. Through a comprehensive systematic review and detailed anatomical dissections, we aim to elucidate the IFOF's anatomical organization, its contributions to language processing, and its complex three-dimensional configuration, ultimately enhancing the safety and precision of neurosurgical practices. Methods This study employed a two-part methodology: (1) anatomical dissections using Klinger's technique on three human brains, which were fixed and frozen; and (2) a systematic literature review adhering to PRISMA guidelines, with a search of the EMBASE and PubMed databases on January 1, 2025, analyzing 510 studies on IFOF anatomy and function, with a focus on its role in language processing and implications for neurosurgical practice. Results Anatomical dissections identified the IFOF as a prominent anterior-posterior white matter tract with distinct dorsal and ventral components. The dorsal component links the pars triangularis and pars orbitalis of the frontal lobe to the superior parietal lobe and posterior occipital gyri, while the ventral component connects the inferior occipital gyrus and posterior basal temporal region to the dorsolateral prefrontal and orbitofrontal cortices. The IFOF was found to traverse through key areas, including the extreme capsule, insula, and claustrum, and was closely associated with the uncinate fasciculus. The systematic literature review included 15 studies, highlighting the IFOF's critical role in cognitive and linguistic functions, particularly in semantic language processing, reading, naming, and integrating visual information for meaning interpretation. It plays a key role in language comprehension by connecting posterior visual regions to anterior semantic areas. The IFOF also contributes to visual attention and spatial processing, underscoring its importance in contemporary linguistic models. Damage to the IFOF can cause semantic paraphasia, reading difficulties, spatial neglect, and aphasia, highlighting its crucial role in language and cognitive functioning. Conclusion The IFOF plays a pivotal role in integrating visual, motor, and semantic information, facilitating complex interactions between cognitive, linguistic, and visuospatial functions. Its dorsal component aids visuospatial integration, while the ventral component underpins semantic processing. The IFOF's anatomical and functional complexity underscores its critical consideration in neurosurgical planning.
Collapse
Affiliation(s)
| | | | - Maíra Piani Couto
- Department of Neurology, State University of Campinas, Campinas, Brazil
| | | | | | | | - Enrico Ghizoni
- Department of Neurology, State University of Campinas, Campinas, Brazil
| | - Cleiton Formentin
- Department of Neurology, State University of Campinas, Campinas, Brazil
- Department of Neuroscience, Hospital Sirio Libanes, São Paulo, Brazil
| |
Collapse
|
2
|
Dulyan L, Bortolami C, Forkel SJ. Asymmetries in the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:15-36. [PMID: 40074393 DOI: 10.1016/b978-0-443-15646-5.00030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The human brain is an intricate network of cortical regions interconnected by white matter pathways, dynamically supporting cognitive functions. While cortical asymmetries have been consistently reported, the asymmetry of white matter connections remains less explored. This chapter provides a brief overview of asymmetries observed at the cortical, subcortical, cytoarchitectural, and receptor levels before exploring the detailed connectional anatomy of the human brain. It thoroughly examines the lateralization and interindividual variability of 56 distinct white matter tracts, offering a comprehensive review of their structural characteristics and interindividual variability. Additionally, we provide an extensive update on the asymmetry of a wide range of white matter tracts using high-resolution data from the Human Connectome Project (7T HCP www.humanconnectome.org). Future research and advanced quantitative analyses are crucial to understanding fully how asymmetry contributes to interindividual variability. This comprehensive exploration enhances our understanding of white matter organization and its potential implications for brain function.
Collapse
Affiliation(s)
- Lilit Dulyan
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| | - Cesare Bortolami
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy; Università di Genova, Genova, Italy
| | - Stephanie J Forkel
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Basile GA, Nozais V, Quartarone A, Giustiniani A, Ielo A, Cerasa A, Milardi D, Abdallah M, Thiebaut de Schotten M, Forkel SJ, Cacciola A. Functional anatomy and topographical organization of the frontotemporal arcuate fasciculus. Commun Biol 2024; 7:1655. [PMID: 39702403 DOI: 10.1038/s42003-024-07274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Traditionally, the frontotemporal arcuate fasciculus (AF) is viewed as a single entity in anatomo-clinical models. However, it is unclear if distinct cortical origin and termination patterns within this bundle correspond to specific language functions. We use track-weighted dynamic functional connectivity, a hybrid imaging technique, to study the AF structure and function in two distinct datasets of healthy subjects. Here we show that the AF can be subdivided based on dynamic changes in functional connectivity at the streamline endpoints. An unsupervised parcellation algorithm reveals spatially segregated subunits, which are then functionally quantified through meta-analysis. This approach identifies three distinct clusters within the AF - ventral, middle, and dorsal frontotemporal AF - each linked to different frontal and temporal termination regions and likely involved in various language production and comprehension aspects. Our findings may have relevant implications for the understanding of the functional anatomy of the AF as well as its contribution to linguistic and non-linguistic functions.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | | | - Augusto Ielo
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Complex Biological Systems (IBSBC CNR), Milan, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Majd Abdallah
- Bordeaux Bioinformatics Center (CBiB), IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
4
|
Çabuk T, Şahin Çevik D, Çakmak IB, Yılmaz Kafalı H, Şenol B, Avcı H, Karlı Oğuz K, Toulopoulou T. Analyzing language ability in first-episode psychosis and their unaffected siblings: A diffusion tensor imaging tract-based spatial statistics analysis study. J Psychiatr Res 2024; 179:229-237. [PMID: 39321521 DOI: 10.1016/j.jpsychires.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Schizophrenia (SZ) is a highly heritable mental disorder, and language dysfunctions play a crucial role in diagnosing it. Although language-related symptoms such as disorganized speech were predicted by the polygenic risk for SZ which emphasized the common genetic liability for the disease, few studies investigated possible white matter integrity abnormalities in the language-related tracts in those at familial high-risk for SZ. Also, their results are not consistent. In this current study, we examined possible aberrations in language-related white matter tracts in patients with first-episode psychosis (FEP, N = 20), their siblings (SIB, N = 20), and healthy controls (CON, N = 20) by applying whole-brain Tract-Based Spatial Statistics and region-of-interest analyses. We also assessed language ability by Thought and Language Index (TLI) using Thematic Apperception Test (TAT) pictures and verbal fluency to see whether the scores of these language tests would predict the differences in these tracts. We found significant alterations in language-related tracts such as inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) among three groups and between SIB and CON. We also proved partly their relationship with the language test as indicated by the significant correlation detected between TLI Impoverished thought/language sub-scale and ILF. We could not find any difference between FEP and CON. These results showed that the abnormalities, especially in the ILF and UF, could be important pathophysiological vulnerability indexes of schizophrenia. Further studies are required to understand better the role of language as a possible endophenotype in schizophrenia with larger samples.
Collapse
Affiliation(s)
- Tuğçe Çabuk
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Psychology, Başkent University, Ankara, Turkey
| | - Didenur Şahin Çevik
- Department of Neuroscience, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | | | - Helin Yılmaz Kafalı
- Department of Psychology, Fevziye Schools Foundations Işık University, İstanbul, Turkey
| | - Bedirhan Şenol
- Department of Psychiatry, Bilkent Şehir Hospital, Ankara, Turkey
| | - Hanife Avcı
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Kader Karlı Oğuz
- Department of Radiology, University of California Medical Center, Sacramento, USA
| | - Timothea Toulopoulou
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Neuroscience, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
5
|
Yu Q, Sun Y, Ju X, Ye T, Liu K. Prediction models of the aphasia severity after stroke by lesion load of cortical language areas and white matter tracts: An atlas-based study. Brain Res Bull 2024; 217:111074. [PMID: 39245352 DOI: 10.1016/j.brainresbull.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/28/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To construct relatively objective, atlas-based multivariate models for predicting early aphasia severity after stroke, using structural magnetic resonance imaging. METHODS We analyzed the clinical and imaging data of 46 patients with post-stroke aphasia. The aphasia severity was identified with a Western Aphasia Battery Aphasia Quotient. The assessments of stroke lesions were indicated by the lesion load of both the cortical language areas (Areas-LL) and four white matter tracts (i.e., the superior longitudinal fasciculus, SLF-LL; the inferior frontal occipital fasciculi, IFOF-LL; the inferior longitudinal, ILF-LL; and the uncinate fasciculi, UF-LL) extracted from human brain atlas. Correlation analyses and multiple linear regression analyses were conducted to evaluate the correlations between demographic, stroke- and lesion-related variables and aphasia severity. The predictive models were then established according to the identified significant variables. Finally, the receiver operating characteristic (ROC) curve was utilized to assess the accuracy of the predictive models. RESULTS The variables including Areas-LL, the SLF-LL, and the IFOF-LL were significantly negatively associated with aphasia severity (p < 0.05). In multiple linear regression analyses, these variables accounted for 59.4 % of the variance (p < 0.05). The ROC curve analyses yielded the validated area under the curve (AUC) 0.84 both for Areas-LL and SLF-LL and 0.76 for IFOF-LL, indicating good predictive performance (p < 0.01). Adding the combination of SLF-LL and IFOF-LL to this model increased the explained variance to 62.6 % and the AUC to 0.92. CONCLUSIONS The application of atlas-based multimodal lesion assessment may help predict the aphasia severity after stroke, which needs to be further validated and generalized for the prediction of more outcome measures in populations with various brain injuries.
Collapse
Affiliation(s)
- Qiwei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China.
| | - Yan Sun
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China
| | - Xiaowen Ju
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China
| | - Tianfen Ye
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China
| | - Kefu Liu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
6
|
Marino S, Menna G, Bilgin L, Mattogno PP, Gaudino S, Quaranta D, Caraglia N, Olivi A, Berger MS, Doglietto F, Della Pepa GM. "False friends" in Language Subcortical Mapping: A Systematic Literature Review. World Neurosurg 2024; 190:350-361.e20. [PMID: 38968990 DOI: 10.1016/j.wneu.2024.06.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Subcortical brain mapping in awake glioma surgery might optimize the extent of resection while minimizing neurological morbidity, but it requires a correct interpretation of responses evoked during surgery. To define, with a systematic review: 1) a comprehensive 'map' of the principal white matter bundles involved in awake surgery on language-related networks, describing the most employed tests and the expected responses; 2) In linguistics, a false friend is a word in a different language that looks or sounds like a word in given language but differs significantly in meaning. Similarly, our aim is to give the surgeons a comprehensive review of potentially misleading responses, namely "false friends", in subcortical language mapping. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Standardized data extraction was conducted. RESULTS Out of a total of 224 initial papers, 67 were included for analysis. Expected responses, common tests, and potential "false friends" were recorded for each of the following white matter bundles: frontal aslant tract, superior and inferior longitudinal fascicles, arcuate fascicle, inferior fronto-occipital fascicle, uncinate fascicle. Practical examples are discussed to underline the risk of intraoperative fallouts ("false friends") that might lead to an early interruption (false positive) or a risky surgical removal (false negative). CONCLUSIONS This paper represents a critical review of the present status of subcortical awake mapping and underlines practical "false-friend" in mapping critical crossroads in language-related networks.
Collapse
Affiliation(s)
- Salvatore Marino
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Grazia Menna
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Lal Bilgin
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Pier Paolo Mattogno
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Simona Gaudino
- Diagnostic Neuroradiology Unit, Department of Radiological and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Davide Quaranta
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Naike Caraglia
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Francesco Doglietto
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giuseppe Maria Della Pepa
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.
| |
Collapse
|
7
|
Deuter D, Hense K, Kunkel K, Vollmayr J, Schachinger S, Wendl C, Schicho A, Fellner C, Salzberger B, Hitzenbichler F, Zeller J, Vielsmeier V, Dodoo-Schittko F, Schmidt NO, Rosengarth K. SARS-CoV2 evokes structural brain changes resulting in declined executive function. PLoS One 2024; 19:e0298837. [PMID: 38470899 DOI: 10.1371/journal.pone.0298837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Several research has underlined the multi-system character of COVID-19. Though effects on the Central Nervous System are mainly discussed as disease-specific affections due to the virus' neurotropism, no comprehensive disease model of COVID-19 exists on a neurofunctional base by now. We aimed to investigate neuroplastic grey- and white matter changes related to COVID-19 and to link these changes to neurocognitive testings leading towards a multi-dimensional disease model. METHODS Groups of acutely ill COVID-19 patients (n = 16), recovered COVID-19 patients (n = 21) and healthy controls (n = 13) were prospectively included into this study. MR-imaging included T1-weighted sequences for analysis of grey matter using voxel-based morphometry and diffusion-weighted sequences to investigate white matter tracts using probabilistic tractography. Comprehensive neurocognitive testing for verbal and non-verbal domains was performed. RESULTS Alterations strongly focused on grey matter of the frontal-basal ganglia-thalamus network and temporal areas, as well as fiber tracts connecting these areas. In acute COVID-19 patients, a decline of grey matter volume was found with an accompanying diminution of white matter tracts. A decline in executive function and especially verbal fluency was found in acute patients, partially persisting in recovered. CONCLUSION Changes in gray matter volume and white matter tracts included mainly areas involved in networks of executive control and language. Deeper understanding of these alterations is necessary especially with respect to long-term impairments, often referred to as 'Post-COVID'.
Collapse
Affiliation(s)
- Daniel Deuter
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Hense
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Kevin Kunkel
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Vollmayr
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Schachinger
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Christina Wendl
- Institut für Röntgendiagnostik, University Hospital Regensburg, Regensburg, Germany
- Institut für Neuroradiologie, Medbo Bezirksklinikum Regensburg, Regensburg, Germany
| | - Andreas Schicho
- Institut für Röntgendiagnostik, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Institut für Röntgendiagnostik, University Hospital Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Abteilung für Krankenhaushygiene und Infektiologie, University Hospital Regensburg, Regensburg, Germany
| | - Florian Hitzenbichler
- Abteilung für Krankenhaushygiene und Infektiologie, University Hospital Regensburg, Regensburg, Germany
| | - Judith Zeller
- Klinik und Poliklinik für Innere Medizin II, University Hospital Regensburg, Regensburg, Germany
| | - Veronika Vielsmeier
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, University Hospital Regensburg, Regensburg, Germany
| | - Frank Dodoo-Schittko
- Institut für Sozialmedizin und Gesundheitsforschung, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nils Ole Schmidt
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Rosengarth
- Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Yu Q, Jiang Y, Sun Y, Ju X, Ye T, Liu N, Qian S, Liu K. Effects of Damage to the Integrity of the Left Dual-Stream Frontotemporal Network Mediated by the Arcuate Fasciculus and Uncinate Fasciculus on Acute/Subacute Post-Stroke Aphasia. Brain Sci 2023; 13:1324. [PMID: 37759925 PMCID: PMC10526853 DOI: 10.3390/brainsci13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: To investigate the correlation between the integrity of the left dual-stream frontotemporal network mediated by the arcuate fasciculus (AF) and uncinate fasciculus (UF), and acute/subacute post-stroke aphasia (PSA). (2) Methods: Thirty-six patients were recruited and received both a language assessment and a diffusion tensor imaging (DTI) scan. Correlations between diffusion indices in the bilateral LSAF/UF and language performance assessment were analyzed with correlation analyses. Multiple linear regression analysis was also implemented to investigate the effects of the integrity of the left LSAF/UF on language performance. (3) Results: Correlation analyses showed that the diffusion indices, including mean fractional anisotropy (FA) values and the fiber number of the left LSAF rather than the left UF was significantly positively associated with language domain scores (p < 0.05). Multiple linear regression analysis revealed an independent and positive association between the mean FA value of the left LSAF and the percentage score of language subsets. In addition, no interaction effect of the integrity of the left LSAF and UF on language performance was found (p > 0.05). (4) Conclusions: The integrity of the left LSAF, but not the UF, might play important roles in supporting residual language ability in individuals with acute/subacute PSA; simultaneous disruption of the dual-stream frontotemporal network mediated by the left LSAF and UF would not result in more severe aphasia than damage to either pathway alone.
Collapse
Affiliation(s)
- Qiwei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Yuer Jiang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Yan Sun
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China;
| | - Xiaowen Ju
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Tianfen Ye
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Na Liu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Surong Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Kefu Liu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China;
| |
Collapse
|
9
|
de Zubicaray GI, Brownsett SLE, Copland DA, Drummond K, Jeffree RL, Olson S, Murton E, Ong B, Robinson GA, Tolkacheva V, McMahon KL. Chronic aphasias after left-hemisphere resective surgery. BRAIN AND LANGUAGE 2023; 239:105244. [PMID: 36889018 DOI: 10.1016/j.bandl.2023.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 05/10/2023]
Abstract
Surgical resection of brain tumours is associated with an increased risk of aphasia. However, relatively little is known about outcomes in the chronic phase (i.e., >6 months). Using voxel-based lesion symptom mapping (VLSM) in 46 patients, we investigated whether chronic language impairments are related to the location of surgical resection, residual tumour characteristics (e.g., peri-resection treatment effects, progressive infiltration, oedema) or both. Approximately 72% of patients scored below the cut-off for aphasia. Action naming and spoken sentence comprehension deficits were associated with lesions in the left anterior temporal and inferior parietal lobes, respectively. Voxel-wise analyses revealed significant associations between ventral language pathways and action naming deficits. Reading impairments were also associated with increasing disconnection of cerebellar pathways. The results indicate chronic post-surgical aphasias reflect a combination of resected tissue and tumour infiltration of language-related white matter tracts, implicating progressive disconnection as the critical mechanism of impairment.
Collapse
Affiliation(s)
- Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Sonia L E Brownsett
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - Kate Drummond
- Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | | | - Sarah Olson
- Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Emma Murton
- Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Benjamin Ong
- Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Gail A Robinson
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Valeriya Tolkacheva
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Herston Imaging Research Facility, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| |
Collapse
|
10
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
11
|
Tafuri B, Filardi M, Urso D, Gnoni V, De Blasi R, Nigro S, Logroscino G. Asymmetry of radiomics features in the white matter of patients with primary progressive aphasia. Front Aging Neurosci 2023; 15:1120935. [PMID: 37213534 PMCID: PMC10196268 DOI: 10.3389/fnagi.2023.1120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Primary Progressive Aphasia (PPA) is a neurological disease characterized by linguistic deficits. Semantic (svPPA) and non-fluent/agrammatic (nfvPPA) variants are the two main clinical subtypes. We applied a novel analytical framework, based on radiomic analysis, to investigate White Matter (WM) asymmetry and to examine whether asymmetry is associated with verbal fluency performance. Methods Analyses were performed on T1-weighted images including 56 patients with PPA (31 svPPA and 25 nfvPPA) and 53 age- and sex-matched controls. Asymmetry Index (AI) was computed for 86 radiomics features in 34 white matter regions. The relationships between AI, verbal fluency performance (semantic and phonemic) and Boston Naming Test score (BNT) were explored through Spearman correlation analysis. Results Relative to controls, WM asymmetry in svPPA patients involved regions adjacent to middle temporal cortex as part of the inferior longitudinal (ILF), fronto-occipital (IFOF) and superior longitudinal fasciculi. Conversely, nfvPPA patients showed an asymmetry of WM in lateral occipital regions (ILF/IFOF). A higher lateralization involving IFOF, cingulum and forceps minor was found in nfvPPA compared to svPPA patients. In nfvPPA patients, semantic fluency was positively correlated to asymmetry in ILF/IFOF tracts. Performances at BNT were associated with AI values of the middle temporal (ILF/SLF) and parahippocampal (ILF/IFOF) gyri in svPPA patients. Discussion Radiomics features depicted distinct pathways of asymmetry in svPPA and nfvPPA involving damage of principal fiber tracts associated with speech and language. Assessing asymmetry of radiomics in PPA allows achieving a deeper insight into the neuroanatomical damage and may represent a candidate severity marker for language impairments in PPA patients.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Benedetta Tafuri,
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King’s College London, London, United Kingdom
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Diagnostic Imaging, Pia Fondazione di Culto e Religione “Card. G. Panico”, Tricase, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
12
|
Neural correlates of impaired vocal feedback control in post-stroke aphasia. Neuroimage 2022; 250:118938. [PMID: 35092839 PMCID: PMC8920755 DOI: 10.1016/j.neuroimage.2022.118938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
Abstract
We used left-hemisphere stroke as a model to examine how damage to sensorimotor brain networks impairs vocal auditory feedback processing and control. Individuals with post-stroke aphasia and matched neurotypical control subjects vocalized speech vowel sounds and listened to the playback of their self-produced vocalizations under normal (NAF) and pitch-shifted altered auditory feedback (AAF) while their brain activity was recorded using electroencephalography (EEG) signals. Event-related potentials (ERPs) were utilized as a neural index to probe the effect of vocal production on auditory feedback processing with high temporal resolution, while lesion data in the stroke group was used to determine how brain abnormality accounted for the impairment of such mechanisms. Results revealed that ERP activity was aberrantly modulated during vocalization vs. listening in aphasia, and this effect was accompanied by the reduced magnitude of compensatory vocal responses to pitch-shift alterations in the auditory feedback compared with control subjects. Lesion-mapping revealed that the aberrant pattern of ERP modulation in response to NAF was accounted for by damage to sensorimotor networks within the left-hemisphere inferior frontal, precentral, inferior parietal, and superior temporal cortices. For responses to AAF, neural deficits were predicted by damage to a distinguishable network within the inferior frontal and parietal cortices. These findings define the left-hemisphere sensorimotor networks implicated in auditory feedback processing, error detection, and vocal motor control. Our results provide translational synergy to inform the theoretical models of sensorimotor integration while having clinical applications for diagnosis and treatment of communication disabilities in individuals with stroke and other neurological conditions.
Collapse
|
13
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
14
|
Savard M, Pascoal TA, Servaes S, Dhollander T, Iturria-Medina Y, Kang MS, Vitali P, Therriault J, Mathotaarachchi S, Benedet AL, Gauthier S, Rosa-Neto P. Impact of long- and short-range fiber depletion on the cognitive deficits of fronto-temporal dementia. eLife 2022; 11:73510. [PMID: 35073256 PMCID: PMC8824472 DOI: 10.7554/elife.73510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest a framework where white-matter (WM) atrophy plays an important role in fronto-temporal dementia (FTD) pathophysiology. However, these studies often overlook the fact that WM tracts bridging different brain regions may have different vulnerabilities to the disease and the relative contribution of grey-matter (GM) atrophy to this WM model, resulting in a less comprehensive understanding of the relationship between clinical symptoms and pathology. Using a common factor analysis to extract a semantic and an executive factor, we aimed to test the relative contribution of WM and GM of specific tracts in predicting cognition in the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI). We found that semantic symptoms were mainly dependent on short-range WM fibre disruption, while damage to long-range WM fibres was preferentially associated to executive dysfunction with the GM contribution to cognition being predominant for local processing. These results support the importance of the disruption of specific WM tracts to the core cognitive symptoms associated with FTD. As large-scale WM tracts, which are particularly vulnerable to vascular disease, were highly associated with executive dysfunction, our findings highlight the importance of controlling for risk factors associated with deep WM disease, such as vascular risk factors, in patients with FTD in order not to potentiate underlying executive dysfunction.
Collapse
Affiliation(s)
- Melissa Savard
- Translational Neuroimaging Laboratory, McGill University
| | | | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University
| | | | | | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University
| | | | | | | | | | | |
Collapse
|
15
|
Shekari E, Goudarzi S, Shahriari E, Joghataei MT. Extreme capsule is a bottleneck for ventral pathway. IBRO Neurosci Rep 2021; 10:42-50. [PMID: 33861816 PMCID: PMC8019950 DOI: 10.1016/j.ibneur.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
As neuroscience literature suggests, extreme capsule is considered a whiter matter tract. Nevertheless, it is not clear whether extreme capsule itself is an association fiber pathway or only a bottleneck for other association fibers to pass. Via our review, investigating anatomical position, connectivity and cognitive role of the bundles in extreme capsule, and by analyzing data from the dissection, it can be argued that extreme capsule is probably a bottleneck for the passage of uncinated fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF), and these fasciculi are responsible for the respective roles in language processing.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sepideh Goudarzi
- Department of pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Corresponding author.
| |
Collapse
|