1
|
Gu L, Pang Y, Yang J, Qu J, Gu N, Mei L. Orthographic and phonological processing in the left ventral occipitotemporal cortex during Chinese word reading. Psychophysiology 2024; 61:e14703. [PMID: 39367529 DOI: 10.1111/psyp.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
The left ventral occipitotemporal cortex (lvOT) has been consistently identified as a crucial structure in word reading, and its function varies across subregions. Nevertheless, the specific function of the lvOT and its subregions remains controversial because the obvious grapheme-to-phoneme correspondence rules of alphabetic languages make it difficult to disentangle the contributions of orthography and phonology to neural activations. To explore information processing in lvOT subregions, the present study manipulated the orthography and phonology in a factorial design and used the fMRI rapid adaptation paradigm. The results revealed a posterior-to-anterior functional gradient in lvOT in Chinese word reading and specified that the functional transition from sublexical to lexical processing occurred in the middle subregion close to the classic VWFA. More importantly, we found that the middle and posterior subregions of lvOT are responsible for processing both orthographic and phonological information during Chinese word reading. These results elaborated the function of the lvOT in Chinese word reading.
Collapse
Affiliation(s)
- Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Nannan Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Lin Z, Li X, Qi G, Yang J, Sun H, Guo Q, Wu J, Xu M. Phonological properties of logographic words modulate brain activation in bilinguals: a comparative study of Chinese characters and Japanese Kanji. Cereb Cortex 2024; 34:bhae150. [PMID: 38652552 PMCID: PMC11037275 DOI: 10.1093/cercor/bhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The brain networks for the first (L1) and second (L2) languages are dynamically formed in the bilingual brain. This study delves into the neural mechanisms associated with logographic-logographic bilingualism, where both languages employ visually complex and conceptually rich logographic scripts. Using functional Magnetic Resonance Imaging, we examined the brain activity of Chinese-Japanese bilinguals and Japanese-Chinese bilinguals as they engaged in rhyming tasks with Chinese characters and Japanese Kanji. Results showed that Japanese-Chinese bilinguals processed both languages using common brain areas, demonstrating an assimilation pattern, whereas Chinese-Japanese bilinguals recruited additional neural regions in the left lateral prefrontal cortex for processing Japanese Kanji, reflecting their accommodation to the higher phonological complexity of L2. In addition, Japanese speakers relied more on the phonological processing route, while Chinese speakers favored visual form analysis for both languages, indicating differing neural strategy preferences between the 2 bilingual groups. Moreover, multivariate pattern analysis demonstrated that, despite the considerable neural overlap, each bilingual group formed distinguishable neural representations for each language. These findings highlight the brain's capacity for neural adaptability and specificity when processing complex logographic languages, enriching our understanding of the neural underpinnings supporting bilingual language processing.
Collapse
Affiliation(s)
- Zhenglong Lin
- School of Psychology, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, Guangdong, China
| | - Xiujun Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Weixing Road 7186, Changchun 130022, Jilin, China
| | - Geqi Qi
- Department of Psychology, College of Education Science, Inner Mongolia Normal University, West College Road 235, Huhhot 010021, Inner Mongolia, China
| | - Jiajia Yang
- Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, 2-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang 110055, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang 110055, Liaoning, China
| | - Jinglong Wu
- Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, 2-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Zhongguancun South Street No 5, Beijing 100811, China
| | - Min Xu
- School of Psychology, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, Guangdong, China
| |
Collapse
|
3
|
Khan R, Zhuang W. The implications of internet-based Chinese language courses on online classes. Front Psychol 2024; 14:1203136. [PMID: 38504906 PMCID: PMC10949863 DOI: 10.3389/fpsyg.2023.1203136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/05/2023] [Indexed: 03/21/2024] Open
Abstract
Interactionist and social-cultural perspectives on second language acquisition suggest that interactions between teachers and students offer promising avenues for acquiring Chinese as a second language, which the vast majority of international students consider difficult. Computer-mediated communication is far safer than face-to-face encounters during the present pandemic. Three aims are being investigated here. It is important to first analyze the differences between traditional classroom and online learning by different modes, then analyze the various ways teachers use computer-mediated communication, and finally analyze the challenges and opportunities presented by online Chinese as a second language courses using qualitative research methods. Three teachers and 84 students are analyzed statistically in terms of their multimodal interactions, and the quality of their weekly classroom exchanges is assessed through an interpretive analysis of questionnaire data, all in the name of a mixed-methods approach. Particular attention was paid to the challenges of online tutoring for students, the discrepancy between instructor and student understandings, and the use of several teaching strategies with international students. The online classroom environment places unique demands on the quality of student-teacher communication. Different strategies must be used when teaching non-native speakers of Chinese as a second language compared to teaching in a traditional classroom setting.
Collapse
Affiliation(s)
- Rabnawaz Khan
- School of Finance and Economics, Fujian University of Technology, Fuzhou, China
| | - Weiqing Zhuang
- School of Internet Economics and Business, Fujian University of Technology, Fuzhou, China
| |
Collapse
|
4
|
Langensee L, Spotorno N, Mårtensson J. Beyond the language network: Associations between reading, receptive vocabulary, and grey matter volume in 10-year-olds. Neuropsychologia 2023; 191:108719. [PMID: 37939873 DOI: 10.1016/j.neuropsychologia.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Most research on the neurostructural basis of language abilities in children stems from small samples and surface-based measures. To complement and expand the existent knowledge, we investigated associations between grey matter volume and language performance in a large sample of 9-to-11-year-old children, using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 1865) and an alternative measure of grey matter morphology. We estimated whole-brain grey matter volume for one half of the sample (N = 939) and tested for correlations with scores on a picture vocabulary and a letter and word reading test, with and without factoring in general intelligence and total grey matter volume as additional covariates. The initial analyses yielded correlations between grey matter in the right occipital fusiform gyrus, the right lingual gyrus, and the cerebellum for both vocabulary and reading. Employing the significant clusters from the first analyses as regions of interest in the second half of the cohort (N = 926) in correlational and multiple regression analyses suggests the cluster in the right occipital fusiform and lingual gyri to be most robust. Overall, the amount of variance explained by grey matter volume is limited and factoring in additional covariates paints an inconsistent picture. The present findings reinforce existent doubt with respect to explaining individual differences in reading and vocabulary performance based on unique contributions of macrostructural brain features.
Collapse
Affiliation(s)
- Lara Langensee
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Mazurchuk S, Conant LL, Tong JQ, Binder JR, Fernandino L. Stimulus Repetition and Sample Size Considerations in Item-Level Representational Similarity Analysis. LANGUAGE, COGNITION AND NEUROSCIENCE 2023; 39:1161-1172. [PMID: 39525357 PMCID: PMC11544752 DOI: 10.1080/23273798.2023.2232903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/26/2023] [Indexed: 11/16/2024]
Abstract
In studies using representational similarity analysis (RSA) of fMRI data, the reliability of the neural representational dissimilarity matrix (RDM) is a limiting factor in the ability to detect neural correlates of a model. A common strategy for boosting neural RDM reliability is to employ repeated presentations of the stimulus set across imaging runs or sessions. However, little is known about how the benefits of stimulus repetition are affected by repetition suppression, or how they compare with the benefits of increasing the number of participants. We examined the effects of these design parameters in two large data sets where participants performed a semantic decision task on visually presented words. We found that reliability gains from stimulus repetition were strongly affected by repetition suppression, both within and across scanning sessions separated by multiple weeks. The results provide new insights into these experimental design choices, particularly for item-level RSA studies of semantic cognition.
Collapse
Affiliation(s)
- Stephen Mazurchuk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lisa L. Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jia-Qing Tong
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey R. Binder
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leonardo Fernandino
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| |
Collapse
|