1
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Pereira ED, Faria AM, Andrade-Franzé GMF, Menani JV, De Luca LA, Andrade CAF. Sodium palatability in male spontaneously hypertensive rats. Horm Behav 2021; 130:104952. [PMID: 33647281 DOI: 10.1016/j.yhbeh.2021.104952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Spontaneously hypertensive rats (SHRs) ingest more NaCl than normotensive strains. Here we investigated NaCl intake and taste reactivity in adult male SHRs and normotensive Holtzman rats treated or not with AT1 receptor antagonist centrally in euhydrated condition and after fluid depletion. Taste reactivity was measured by the number of orofacial expressions to intra-oral infusions of 0.3 M NaCl. In euhydrated condition, intra-oral infusions of 0.3 M NaCl produced greater number of hedonic responses in SHRs than in normotensive rats, without differences in the number of aversive responses. Compared to euhydrated condition, the treatment with the diuretic furosemide + low dose of captopril (angiotensin converting enzyme blocker) increased the number of hedonic and reduced the number of aversive responses to intra-oral NaCl in normotensive rats, without changing the number of hedonic or aversive responses in SHRs. Losartan (AT1 receptor antagonist, 100 ng/1 μl) injected intracerebroventricularly in SHRs abolished 0.3 M NaCl intake induced by water deprivation + partial rehydration, whereas only transiently (first 30 min of the 60 min test) reduced hedonic responses, without changes in aversive responses to intra-oral NaCl. Losartan intracerebroventricularly also only transiently (first 30 min) reduced the number of hedonic responses to intra-oral NaCl in euhydrated SHRs. The results suggest that NaCl palatability is increased and independent from body fluid balance in SHRs. The results also suggest that central AT1 receptors are part of the mechanisms activated to increase NaCl intake and palatability in SHRs. A partial dissociation between NaCl intake and palatability in SHRs is also suggested.
Collapse
Affiliation(s)
- E D Pereira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - A M Faria
- Graduate Program in Physiology of the Brazilian Physiological Society, Unifal-MG, Alfenas, MG, Brazil
| | - G M F Andrade-Franzé
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Andrade-Franzé GMF, Pereira ED, Yosten GLC, Samson WK, Menani JV, De Luca LA, Andrade CAF. Blockade of ERK1/2 activation with U0126 or PEP7 reduces sodium appetite and angiotensin II-induced pressor responses in spontaneously hypertensive rats. Peptides 2021; 136:170439. [PMID: 33166587 DOI: 10.1016/j.peptides.2020.170439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Spontaneously hypertensive rats (SHRs) have increased daily or induced sodium intake compared to normotensive rats. In normotensive rats, angiotensin II (ANG II)-induced sodium intake is blocked by the inactivation of p42/44 mitogen-activated protein kinase, also known as extracellular signal-regulated protein kinase1/2 (ERK1/2). Here we investigated if inhibition of ERK1/2 pathway centrally would change sodium appetite and intracerebroventricular (icv) ANG II-induced pressor response in SHRs. SHRs (280-330 g, n = 07-14/group) with stainless steel cannulas implanted in the lateral ventricle (LV) were used. Water and 0.3 M NaCl intake was induced by the treatment with the diuretic furosemide + captopril (angiotensin converting enzyme blocker) subcutaneously or 24 h of water deprivation (WD) followed by 2 h of partial rehydration with only water (PR). The blockade of ERK1/2 activation with icv injections of U0126 (MEK1/2 inhibitor, 2 mM; 2 μl) reduced 0.3 M NaCl intake induced by furosemide + captopril (5.0 ± 1.0, vs. vehicle: 7.3 ± 0.7 mL/120 min) or WD-PR (4.6 ± 1.3, vs. vehicle: 10.3 ± 1.4 mL/120 min). PEP7 (selective inhibitor of AT1 receptor-mediated ERK1/2 activation, 2 nmol/2 μL) icv also reduced WD-PR-induced 0.3 M NaCl (2.8 ± 0.7, vs. vehicle: 6.8 ± 1.4 mL/120 min). WD-PR-induced water intake was also reduced by U0126 or PEP7. In addition, U0126 or PEP7 icv reduced the pressor response to icv ANG II. Therefore, the present results suggest that central AT1 receptor-mediated ERK1/2 activation is part of the mechanisms involved in sodium appetite and ANG II-induced pressor response in SHRs.
Collapse
Affiliation(s)
- G M F Andrade-Franzé
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - E D Pereira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - G L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - W K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Anesio A, Barbosa SP, De Luca LA, de Paula PM, Colombari DSA, Colombari E, Andrade CAF, Menani JV. Central muscarinic and LPBN mechanisms on sodium intake. Brain Res Bull 2018; 144:14-20. [PMID: 30391542 DOI: 10.1016/j.brainresbull.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
Central cholinergic activation stimulates water intake, but also NaCl intake when the inhibitory mechanisms are blocked with injections of moxonidine (α2 adrenergic/imidazoline agonist) into the lateral parabrachial nucleus (LPBN). In the present study, we investigated the involvement of central M1 and M2 muscarinic receptors on NaCl intake induced by pilocarpine (non-selective muscarinic agonist) intraperitoneally combined with moxonidine into the LPBN or by muscimol (GABAA agonist) into the LPBN. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN and in the lateral ventricle were used. Pirenzepine (M1 muscarinic antagonist, 1 nmol/1 μl) or methoctramine (M2 muscarinic antagonist, 50 nmol/1 μL) injected intracerebroventricularly (i.c.v.) reduced 0.3 M NaCl and water intake in rats treated with pilocarpine (0.1 mg/100 g of body weight) injected intraperitoneally combined with moxonidine (0.5 nmol/0.2 μL) into the LPBN. In rats treated with muscimol (0.5 nmol/0.2 μL) into the LPBN, methoctramine i.c.v. also reduced 0.3 M NaCl and water intake, however, pirenzepine produced no effect. The results suggest that M1 and M2 muscarinic receptors activate central pathways involved in the control of water and sodium intake that are under the influence of the LPBN inhibitory mechanisms.
Collapse
Affiliation(s)
- Augusto Anesio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Silas Pereira Barbosa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Patrícia Maria de Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Carina A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
5
|
De Oliveira LB, Andrade CA, De Luca LA, Colombari DS, Menani JV. Opioid and α2 adrenergic mechanisms are activated by GABA agonists in the lateral parabrachial nucleus to induce sodium intake. Brain Res Bull 2018; 139:174-181. [DOI: 10.1016/j.brainresbull.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
|
6
|
Roncari CF, David RB, De Paula PM, Colombari DS, De Luca Jr. LA, Colombari E, Menani JV. The lateral parabrachial nucleus and central angiotensinergic mechanisms in the control of sodium intake induced by different stimuli. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Rapid stimulation of sodium intake combining aldosterone into the 4th ventricle and the blockade of the lateral parabrachial nucleus. Neuroscience 2017; 346:94-101. [DOI: 10.1016/j.neuroscience.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
|
8
|
Lateral parabrachial nucleus and opioid mechanisms of the central nucleus of the amygdala in the control of sodium intake. Behav Brain Res 2017; 316:11-17. [DOI: 10.1016/j.bbr.2016.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022]
|
9
|
Importance of the lateral parabrachial nucleus to sodium balance in fluid-depleted rats. Neurosci Res 2016; 111:41-7. [DOI: 10.1016/j.neures.2016.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/23/2022]
|
10
|
Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews. Neuroscience 2016; 333:162-80. [PMID: 27436534 DOI: 10.1016/j.neuroscience.2016.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022]
Abstract
The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal.
Collapse
|
11
|
Domingos-Souza G, Meschiari CA, Buzelle SL, Callera JC, Antunes-Rodrigues J. Sodium and water intake are not affected by GABAC receptor activation in the lateral parabrachial nucleus of sodium-depleted rats. J Chem Neuroanat 2016; 74:47-54. [PMID: 26970564 DOI: 10.1016/j.jchemneu.2016.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/13/2016] [Accepted: 03/05/2016] [Indexed: 11/16/2022]
Abstract
The activation of GABAergic receptors, GABAA and GABAB, in the lateral parabrachial nucleus (LPBN) increases water and sodium intake in satiated and fluid-depleted rats. The present study investigated the presence of the GABAC receptor in the LPBN, its involvement in water and sodium intake, and its effects on cardiovascular parameters during the acute fluid depletion induced by furosemide combined with captopril (Furo/Cap). One group of male Wistar rats (290-300g) with bilateral stainless steel LPBN cannulas was used to test the effects of a GABAC receptor agonist and antagonist on the fluid intake and cardiovascular parameters. We investigated the effects of bilateral LPBN injections of trans-4-aminocrotonic acid (TACA) on the intake of water and 0.3M NaCl induced by acute fluid depletion (subcutaneous injection of Furo/Cap). c-Fos expression increased (P<0.05), suggesting LPBN neuronal activation. The injection of different doses of TACA (0.5, 2.0 and 160 nmol) in the LPBN did not change the sodium or water intake in Furo/Cap-treated rats (P>0.05). Treatment with the GABAC receptor antagonist (Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid sulfate (ZAPA, 10nmol) or with ZAPA (10nmol) plus TACA (160nmol) did not change the sodium or water intake compared with that for vehicle (saline) (P>0.05). Bilateral injections of the GABAC agonist in the LPBN of Furo/Cap-treated rats did not affect the mean arterial pressure (MAP) or heart rate (HR). The GABAC receptor expression in the LPBN was confirmed by the presence of a 50kDa band. Although LPBN neurons might express GABAC receptors, their activation produced no change in water and sodium intake or in the cardiovascular parameters in the acute fluid depletion rats. Therefore, the GABAC receptors in the LPBN might not interfere with fluid and blood pressure regulation.
Collapse
Affiliation(s)
- Gean Domingos-Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Cesar Arruda Meschiari
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Samyra Lopes Buzelle
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Carlos Callera
- Department of Basic Sciences, School of Dentistry, UNESP - Universidade Estadual Paulista, Rodovia, Araçatuba, SP, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Brain Res 2015; 1625:238-45. [DOI: 10.1016/j.brainres.2015.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022]
|
13
|
Gasparini S, Andrade-Franzé GMF, Gomide JMC, Andrade CAF, De Luca LA, Colombari DSA, De Paula PM, Colombari E, Menani JV. Sodium intake combining cholinergic activation and noradrenaline into the lateral parabrachial nucleus. Neuroscience 2015; 300:229-37. [PMID: 25977166 DOI: 10.1016/j.neuroscience.2015.04.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/17/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
The administration of cholinergic agonists like pilocarpine intraperitoneally (i.p.) or carbachol intracerebroventricularly (i.c.v.) induces water, but non significant hypertonic NaCl intake. These treatments also produce pressor responses, which may inhibit sodium intake. Noradrenaline (NOR) acting on α2-adrenoceptors in the lateral parabrachial nucleus (LPBN) deactivates inhibitory mechanisms increasing fluid depletion-induced sodium intake. In the present study, we investigated: (1) water and 1.8% NaCl intake in rats treated with pilocarpine i.p. or carbachol i.c.v. combined with NOR into the LPBN; (2) if inhibitory signals from cardiovascular receptors are blocked by NOR in the LPBN. Male Holtzman rats with stainless steel guide-cannulas implanted in the lateral ventricle and bilaterally in the LPBN were used. Bilateral injections of NOR (80nmol/0.2μl) into the LPBN decreased water intake (0.8±0.3, vs. saline (SAL): 2.9±0.3ml/180min) induced by pilocarpine (1mg/kg of body weight) i.p., without changing 1.8% NaCl intake (0.8±2.4, vs. SAL: 0.5±0.3ml/180min). Prazosin (1mg/kg of body weight) i.p. blocked pressor responses and increased water and 1.8% NaCl intake (6.3±1.7 and 14.7±3.5ml/180min, respectively) in rats treated with pilocarpine combined with NOR into the LPBN. Prazosin i.p. also increased 1.8% NaCl intake in rats treated with carbachol i.c.v combined with NOR into the LPBN. The results suggest that different signals inhibit sodium intake in rats treated with cholinergic agonists, among them those produced by increases of arterial pressure that are not efficiently deactivated by NOR acting in the LPBN.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - G M F Andrade-Franzé
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J M C Gomide
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - D S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - P M De Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - E Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
14
|
Pavan CG, Roncari CF, Barbosa SP, De Paula PM, Colombari DS, De Luca LA, Colombari E, Menani JV. Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats. Behav Brain Res 2015; 288:20-5. [DOI: 10.1016/j.bbr.2015.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/03/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
|
15
|
Andrade C, De Oliveira L, Andrade-Franzé G, De Luca Jr L, Colombari DS, Menani J. Gabaergic and opioid receptors mediate the facilitation of NaCl intake induced by α2-adrenergic activation in the lateral parabrachial nucleus. Behav Brain Res 2015; 278:535-41. [DOI: 10.1016/j.bbr.2014.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
|
16
|
Davern PJ. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front Physiol 2014; 5:436. [PMID: 25477821 PMCID: PMC4235290 DOI: 10.3389/fphys.2014.00436] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is located in an anatomical position that enables it to perform a critical role in relaying signals related to the regulation of fluid and electrolyte intake and cardiovascular function from the brainstem to the forebrain. Early neuroanatomical studies have described the topographic organization of blood pressure sensitive neurons and functional studies have demonstrated a major role for the LPBN in regulating cardiovascular function, including blood pressure, in response to hemorrhages, and hypovolemia. In addition, inactivation of the LPBN induces overdrinking of water in response to a range of dipsogenic treatments primarily, but not exclusively, those associated with endogenous centrally acting angiotensin II. Moreover, treatments that typically cause water intake stimulate salt intake under some circumstances particularly when serotonin receptors in the LPBN are blocked. This review explores the expanding body of evidence that underlies the complex neural network within the LPBN influencing salt appetite, thirst and the regulation of blood pressure. Importantly understanding the interactions among neurons in the LPBN that affect fluid balance and cardiovascular control may be critical to unraveling the mechanisms responsible for hypertension.
Collapse
Affiliation(s)
- Pamela J Davern
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| |
Collapse
|
17
|
Gasparini S, Menani JV, Daniels D. Moxonidine into the lateral parabrachial nucleus modifies postingestive signals involved in sodium intake control. Neuroscience 2014; 284:768-774. [PMID: 25264033 DOI: 10.1016/j.neuroscience.2014.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
The activation of α2-adrenoceptors with bilateral injections of moxonidine (α2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO)+captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague-Dawley rats were treated with FURO+CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 μl) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO+CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49±9 bursts/bin, vs. vehicle: 2±2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24±5 licks/burst, vs. vehicle: 27±8 licks/burst). This finding suggests that activation of α2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO+CAP-treated rats.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil.
| | - D Daniels
- Department of Psychology, University at Buffalo, The State University of New York, United States
| |
Collapse
|
18
|
Andrade CAF, Andrade-Franzé GMF, De Paula PM, De Luca LA, Menani JV. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis. Braz J Med Biol Res 2014; 47:11-8. [PMID: 24519089 PMCID: PMC3932968 DOI: 10.1590/1414-431x20133308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/15/2013] [Indexed: 12/03/2022] Open
Abstract
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus
(LPBN) are involved in the control of sodium and water intake. Bilateral injections
of moxonidine (α2-adrenergic/imidazoline receptor agonist) or
noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a
combined treatment of furosemide plus captopril. Injection of moxonidine into the
LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion,
urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium
and water balance, which suggests that moxonidine injected into the LPBN deactivates
mechanisms that restrain body fluid volume expansion. Pretreatment with specific
α2-adrenoceptor antagonists injected into the LPBN abolishes the
behavioral and renal effects of moxonidine or noradrenaline injected into the same
area, suggesting that these effects depend on activation of LPBN
α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is
reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated
with moxonidine injected into the LPBN, the NaCl palatability remains high, even
after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and
renal responses produced by activation of α2-adrenoceptors in the LPBN are
probably a consequence of reduction of oxytocin secretion and blockade of inhibitory
signals that affect sodium palatability. In this review, a model is proposed to show
how activation of α2-adrenoceptors in the LPBN may affect palatability
and, consequently, ingestion of sodium as well as renal sodium excretion.
Collapse
Affiliation(s)
- C A F Andrade
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - G M F Andrade-Franzé
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - P M De Paula
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - L A De Luca
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - J V Menani
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| |
Collapse
|
19
|
Menani JV, De Luca LA, Johnson AK. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am J Physiol Regul Integr Comp Physiol 2014; 306:R201-10. [PMID: 24401989 DOI: 10.1152/ajpregu.00251.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In states of sodium deficiency many animals seek and consume salty solutions to restore body fluid homeostasis. These behaviors reflect the presence of sodium appetite that is a manifestation of a pattern of central nervous system (CNS) activity with facilitatory and inhibitory components that are affected by several neurohumoral factors. The primary focus of this review is on one structure in this central system, the lateral parabrachial nucleus (LPBN). However, before turning to a more detailed discussion of the LPBN, a brief overview of body fluid balance-related body-to-brain signaling and the identification of the primary CNS structures and humoral factors involved in the control of sodium appetite is necessary. Angiotensin II, mineralocorticoids, and extracellular osmotic changes act on forebrain areas to facilitate sodium appetite and thirst. In the hindbrain, the LPBN functions as a key integrative node with an ascending output that exerts inhibitory influences on forebrain regions. A nonspecific or general deactivation of LPBN-associated inhibition by GABA or opioid agonists produces NaCl intake in euhydrated rats without any other treatment. Selective LPBN manipulation of other neurotransmitter systems [e.g., serotonin, cholecystokinin (CCK), corticotrophin-releasing factor (CRF), glutamate, ATP, or norepinephrine] greatly enhances NaCl intake when accompanied by additional treatments that induce either thirst or sodium appetite. The LPBN interacts with key forebrain areas that include the subfornical organ and central amygdala to determine sodium intake. To summarize, a model of LPBN inhibitory actions on forebrain facilitatory components for the control of sodium appetite is presented in this review.
Collapse
Affiliation(s)
- Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil; and Departments of Psychology, Pharmacology and Health, and Human Physiology and the Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
20
|
Roncari CF, David RB, Johnson RF, De Paula PM, Colombari DSA, De Luca LA, Johnson AK, Colombari E, Menani JV. Angiotensinergic and cholinergic receptors of the subfornical organ mediate sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience 2013; 262:1-8. [PMID: 24374079 DOI: 10.1016/j.neuroscience.2013.12.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Bilateral injections of the GABA(A) agonist muscimol into the lateral parabrachial nucleus (LPBN) induce 0.3 M NaCl and water intake in satiated and normovolemic rats, a response reduced by intracerebroventricular (icv) administration of losartan or atropine (angiotensinergic type 1 (AT₁) and cholinergic muscarinic receptor antagonists, respectively). In the present study, we investigated the effects of the injections of losartan or atropine into the subfornical organ (SFO) on 0.3M NaCl and water intake induced by injections of muscimol into the LPBN. In addition, using intracellular calcium measurement, we also tested the sensitivity of SFO-cultured cells to angiotensin II (ANG II) and carbachol (cholinergic agonist). In male Holtzman rats with cannulas implanted bilaterally into the LPBN and into the SFO, injections of losartan (1 μg/0.1 μl) or atropine (2 nmol/0.1 μl) into the SFO almost abolished 0.3M NaCl and water intake induced by muscimol (0.5 nmol/0.2 μl) injected into the LPBN. In about 30% of the cultured cells of the SFO, carbachol and ANG II increased intracellular calcium concentration ([Ca²⁺](i)). Three distinct cell populations were found in the SFO, i.e., cells activated by either ANG II (25%) or carbachol (2.6%) or by both stimuli (2.3%). The results suggest that the activation of angiotensinergic and cholinergic mechanisms in the SFO is important for NaCl and water intake induced by the deactivation of LPBN inhibitory mechanisms with muscimol injections. They also show that there are cells in the SFO activated by both angiotensinergic and cholinergic stimuli, perhaps those involved in the responses to muscimol into the LPBN.
Collapse
Affiliation(s)
- C F Roncari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - R B David
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - R F Johnson
- Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - P M De Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - D S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - A K Johnson
- Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - E Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Shimoura CG, Barbosa SP, Menani JV, De Gobbi JIF. Would right atrial stretch inhibit sodium intake following GABAA receptor activation in the lateral parabrachial nucleus? Neurosci Lett 2013; 553:121-5. [PMID: 23973335 DOI: 10.1016/j.neulet.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 11/16/2022]
Abstract
The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300 g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5 ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1 ± 3.9 vs. saline: 2.2 ± 0.7)ml/210 min, n=8) and water (17.7 ± 1.9 vs. saline: 2.9 ± 0.5 ml/210 min). Conversely, 0.3M NaCl (27.8 ± 2.1 ml/210 min) and water (22.8 ± 2.3 ml/210 min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation.
Collapse
Affiliation(s)
- Caroline Gusson Shimoura
- Department of Physiology, Institute of Bioscience, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | | | | | | |
Collapse
|
22
|
Totola L, Alves T, Takakura A, Ferreira-Neto H, Antunes V, Menani J, Colombari E, Moreira T. Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine. Neuroscience 2013; 250:80-91. [DOI: 10.1016/j.neuroscience.2013.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/28/2013] [Indexed: 01/28/2023]
|
23
|
Gasparini S, Gomide JMC, Andrade-Franzé GMF, Totola LT, De Luca LA, Colombari DSA, De Paula PM, Moreira TS, Menani JV. Facilitation of sodium intake by combining noradrenaline into the lateral parabrachial nucleus with prazosin peripherally. Pharmacol Biochem Behav 2013; 111:111-9. [PMID: 24041937 DOI: 10.1016/j.pbb.2013.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022]
Abstract
Injections of noradrenaline into the lateral parabrachial nucleus (LPBN) increase arterial pressure and 1.8% NaCl intake and decrease water intake in rats treated with the diuretic furosemide (FURO) combined with a low dose of the angiotensin converting enzyme inhibitor captopril (CAP). In the present study, we investigated the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO+CAP-induced water and 1.8% NaCl intake. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Bilateral injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO+CAP-induced 1.8% NaCl intake (12.2±3.5, vs., saline: 4.2±0.8 ml/180 min), reduced water intake and strongly increased arterial pressure (50±7, vs. saline: 1±1 mmHg). The blockade of the α1 adrenoceptors with the prazosin injected intraperitoneally abolished the pressor response and increased 1.8% NaCl and water intake in rats treated with FURO+CAP combined with noradrenaline injected into the LPBN. The deactivation of baro and perhaps volume receptors due to the cardiovascular effects of prazosin is a mechanism that may facilitate water and NaCl intake in rats treated with FURO+CAP combined with noradrenaline injected into the LPBN. Therefore, the activation of α2 adrenoceptors with noradrenaline injected into the LPBN, at least in dose tested, may not completely remove the inhibitory signals produced by the activation of the cardiovascular receptors, particularly the signals that result from the extra activation of these receptors with the increase of arterial pressure.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Asnar DS, Roncari CF, De Luca LA, de Paula PM, Colombari DS, Menani JV. Involvement of central cholinergic mechanisms on sodium intake induced by gabaergic activation of the lateral parabrachial nucleus. Neurosci Lett 2013; 534:188-92. [DOI: 10.1016/j.neulet.2012.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 11/17/2022]
|
25
|
Wang Q, Li J, Yang X, Chen K, Sun B, Yan J. Inhibitory effect of activation of GABAA receptor in the central nucleus of amygdala on the sodium intake in the sodium-depleted rat. Neuroscience 2012; 223:277-84. [DOI: 10.1016/j.neuroscience.2012.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
26
|
Andrade C, Margatho L, Andrade-Franzé G, De Luca L, Antunes-Rodrigues J, Menani J. Moxonidine into the lateral parabrachial nucleus reduces renal and hormonal responses to cell dehydration. Neuroscience 2012; 208:69-78. [DOI: 10.1016/j.neuroscience.2012.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
|
27
|
Roncari C, David R, de Paula P, Colombari D, de Luca L, Menani J. Importance of central AT1 receptors for sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience 2011; 196:147-52. [DOI: 10.1016/j.neuroscience.2011.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/15/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
28
|
Natriorexigenic effect of baclofen is reduced by AT1 receptor blockade in the lateral parabrachial nucleus. Brain Res Bull 2011; 86:348-54. [DOI: 10.1016/j.brainresbull.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/19/2022]
|
29
|
Changes in taste reactivity to intra-oral hypertonic NaCl after lateral parabrachial injections of an α2-adrenergic receptor agonist. Physiol Behav 2011; 104:702-8. [DOI: 10.1016/j.physbeh.2011.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022]
|
30
|
Da Silva CZC, Menani JV, Callera JC. AT1 receptor blockade in the lateral parabrachial nucleus reduces the effects of muscimol on sodium intake. Brain Res 2011; 1403:28-36. [DOI: 10.1016/j.brainres.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
|
31
|
β-Endorphinergic system involvement in the inhibitory action of clonidine on induced sodium appetite. ACTA ACUST UNITED AC 2011; 167:222-6. [DOI: 10.1016/j.regpep.2011.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/19/2022]
|
32
|
De Oliveira LB, Kimura EH, Callera JC, De Luca LA, Colombari DSA, Menani JV. Baclofen into the lateral parabrachial nucleus induces hypertonic sodium chloride and sucrose intake in rats. Neuroscience 2011; 183:160-70. [PMID: 21419196 DOI: 10.1016/j.neuroscience.2011.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/12/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022]
Abstract
GABA(A) and GABA(B) receptors are present in the lateral parabrachial nucleus (LPBN), a pontine area involved with inhibitory mechanisms related to the control of sodium appetite. Activation of GABA(A) receptors in the LPBN induces strong ingestion of 0.3 M sodium chloride (NaCl) in normonatremic and euhydrated rats. In the present study, we investigated the effects of the GABA(B) receptor agonist baclofen, injected alone or combined with GABA(A) or GABA(B) receptor antagonists into the LPBN on 0.3 M NaCl, water, 0.06 M sucrose and food intake in normonatremic and euhydrated rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN were used. In normonatremic and euhydrated rats, bilateral injections of baclofen (0.5 nmol/0.2 μl) into the LPBN induced 0.3 M NaCl (24.0±3.1 vs. saline: 2.0±0.8 ml/240 min) and water intake (10.6±1.4 vs. saline: 3.5±0.7 ml/240 min) in a two-bottle test. Injections of GABA(B) receptor antagonists CGP 35348 (50 nmol/0.2 μl) or 2-hydroxysaclofen (5 nmol/0.2 μl) or GABA(A) receptor antagonist bicuculline (1.6 nmol/0.2 μl) into the LPBN reduced 0.3 M NaCl (14.1±4.7 ml/240 min; 9.97±2.5 ml/210 min; 8.8±5.9 ml/240 min, respectively) and water intake induced by baclofen injected into the LPBN. Baclofen (0.5 nmol/0.2 μl) injected into the LPBN also induced 0.06 M sucrose intake (21.8±5.9 vs. saline: 5.0±2.6 ml/180 min). Urinary volume and sodium excretion had a tendency to decrease after baclofen injection into the LPBN, whereas arterial pressure and food intake were not affected. The results show that baclofen injected into the LPBN, in normonatremic and euhydrated rats, produces a natriorexigenic effect dependent on GABA(A) and GABA(B) receptor activation. The natriorexigenic effect is not secondary to alterations in blood pressure or sodium urinary excretion. In addition, baclofen injected into the LPBN also induces 0.06 M sucrose intake.
Collapse
Affiliation(s)
- L B De Oliveira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Purinergic mechanisms of lateral parabrachial nucleus facilitate sodium depletion-induced NaCl intake. Brain Res 2010; 1372:49-58. [PMID: 21129366 DOI: 10.1016/j.brainres.2010.11.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 11/13/2010] [Accepted: 11/20/2010] [Indexed: 02/06/2023]
Abstract
Purinergic receptors are present in the lateral parabrachial nucleus (LPBN), a pontine structure involved in the control of sodium intake. In the present study, we investigated the effects of α,β-methyleneadenosine 5'-triphosphate (α,β-methylene ATP, selective P2X purinergic agonist) alone or combined with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, P2X purinergic antagonist) or suramin (non-selective P2 purinergic antagonist) injected into the LPBN on sodium depletion-induced 1.8% NaCl intake. Male Holtzman rats with stainless steel cannulas implanted into the LPBN were used. Sodium depletion was induced by treating rats with the diuretic furosemide (20mg/kg of body weight) followed by 24h of sodium-deficient diet. Bilateral injections of α,β-methylene ATP (2.0 and 4.0nmol/0.2μl) into the LPBN increased sodium depletion-induced 1.8% NaCl intake (25.3±0.8 and 26.5±0.9ml/120min, respectively, vs. saline: 15.2±1.3ml/120min). PPADS (4nmol/0.2μl) alone into the LPBN did not change 1.8% NaCl intake, however, pretreatment with PPADS into the LPBN abolished the effects of α,β-methylene ATP on 1.8% NaCl intake (16.9±0.9ml/120min). Suramin (2.0nmol/0.2μl) alone into the LPBN reduced sodium depletion-induced 1.8% NaCl intake (5.7±1.9ml/120min, vs. saline: 15.5±1.1ml/120min), without changing 2% sucrose intake or 24h water deprivation-induced water intake. The combination of suramin and α,β-methylene ATP into the LPBN produced no change of 1.8% NaCl intake (15.2±1.2ml/120min). The results suggest that purinergic P2 receptor activation in the LPBN facilitates NaCl intake, probably by restraining LPBN mechanisms that inhibit sodium intake.
Collapse
|
34
|
Lesions in the central amygdala impair sodium intake induced by the blockade of the lateral parabrachial nucleus. Brain Res 2010; 1332:57-64. [DOI: 10.1016/j.brainres.2010.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 03/13/2010] [Accepted: 03/15/2010] [Indexed: 11/22/2022]
|
35
|
Andrade-Franzé G, Andrade C, De Luca L, De Paula P, Menani J. Lateral parabrachial nucleus and central amygdala in the control of sodium intake. Neuroscience 2010; 165:633-41. [DOI: 10.1016/j.neuroscience.2009.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 10/08/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
|
36
|
Adrenergic mechanisms of the Kölliker-Fuse/A7 area on the control of water and sodium intake. Neuroscience 2009; 164:370-9. [DOI: 10.1016/j.neuroscience.2009.08.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/21/2009] [Accepted: 08/22/2009] [Indexed: 11/20/2022]
|
37
|
Yamaguchi W, Shinkai T, Inoue Y, Utsunomiya K, Sakata S, Fukunaka Y, Yamada K, Chen HI, Hwang R, Ohmori O, Nakamura J. Association analysis between the C-1291G polymorphism in the promoter region of the adrenergic alpha2A receptor gene and polydipsia in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:499-502. [PMID: 19439247 DOI: 10.1016/j.pnpbp.2009.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 11/16/2022]
Abstract
Several lines of studies have shown the existence of an important inhibitory mechanism for the control of water intake involving adrenergic alpha2A receptors (ADRA2A). A human study using patients with schizophrenia demonstrated an exacerbation of polydipsia by the administration of clonidine, an ADRA2A-agonist, and a relief of polydipsia by mianserin, an ADRA2A-antagonist, suggesting the involvement of the central adrenergic system in the drinking behavior of patients with schizophrenia. Based on these findings we examined a possible association between the C-1291G polymorphism in the promoter region of the ADRA2A gene and polydipsia in schizophrenia using a Japanese case-control sample. Our sample includes 348 patients with schizophrenia (DSM-IV) (84 with polydipsia and 264 without polydipsia). No significant association between the ADRA2A C-1291G polymorphism and polydipsia was found. Our result suggests that the ADRA2A C-1291G polymorphism may not confer susceptibility to polydipsia in schizophrenia in our sample. Further studies with larger samples are warranted.
Collapse
Affiliation(s)
- Wakana Yamaguchi
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
De Oliveira L, De Luca L, Menani J. Opioid activation in the lateral parabrachial nucleus induces hypertonic sodium intake. Neuroscience 2008; 155:350-8. [DOI: 10.1016/j.neuroscience.2008.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 04/26/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
|
39
|
Sodium intake by hyperosmotic rats treated with a GABAA receptor agonist into the lateral parabrachial nucleus. Brain Res 2008; 1190:86-93. [DOI: 10.1016/j.brainres.2007.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 10/27/2007] [Accepted: 11/04/2007] [Indexed: 11/23/2022]
|
40
|
Abstract
Thirst and the hunger for sodium containing fluids and food (i.e., sodium appetite) are the consequences of the generation of unique central nervous system states. Altered body fluid homeostasis produces sensory and perceptional changes that arise from signals generated in the body that serve as indices of body fluid balance and distribution. These signaling mechanisms activate networks of brain neurons that use specific neurochemicals to communicate between cells and process information. The brain integrates information derived from various bodily sources so that thirst and sodium appetite are in a true sense the synthetic products of the nervous system. In recent years much has been learned about the stimuli and receptor systems involved in signaling the brain to reflect the status of bodily fluids and about the central neural substrates that process such inputs to generate thirst and sodium appetite. Knowledge about the sensory nature of thirst and sodium appetite provides a basis for understanding the biological constraints under which thirst and sodium appetite operate. This information is important for appreciating the extent to which thirst and sodium appetite motivational states and behaviors can be relied on to maintain and repair disruptions of body fluid homeostasis.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychology, University of Iowa, Iowa City, IA 52242-1407, USA.
| |
Collapse
|
41
|
Geerling JC, Loewy AD. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 2007; 504:379-403. [PMID: 17663450 DOI: 10.1002/cne.21452] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salt intake is an established response to sodium deficiency, but the brain circuits that regulate this behavior remain poorly understood. We studied the activation of neurons in the nucleus of the solitary tract (NTS) and their efferent target nuclei in the pontine parabrachial complex (PB) in rats during sodium deprivation and after salt intake. After 8-day dietary sodium deprivation, immunoreactivity for c-Fos (a neuronal activity marker) increased markedly within the aldosterone-sensitive neurons of the NTS, which express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2). In the PB, c-Fos labeling increased specifically within two sites that relay signals from the HSD2 neurons to the forebrain--the pre-locus coeruleus and the innermost region of the external lateral parabrachial nucleus. Then, 1-2 hours after sodium-deprived rats ingested salt (a hypertonic 3% solution of NaCl), c-Fos immunoreactivity within the HSD2 neurons was virtually eliminated, despite a large increase in c-Fos activation in the surrounding NTS (including the A2 noradrenergic neurons) and area postrema. Also after salt intake, c-Fos activation increased within pontine nuclei that relay gustatory (caudal medial PB) and viscerosensory (rostral lateral PB) information from the NTS to the forebrain. Thus, sodium deficiency and salt intake stimulate separate subpopulations of neurons in the NTS, which then transmit this information to the forebrain via largely separate relay nuclei in the PB complex. These findings offer new perspectives on the roles of sensory information from the brainstem in the regulation of sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
42
|
Moreira TS, Takakura AC, Menani JV, Colombari E. Involvement of central α1- and α2-adrenoceptors on cardiovascular responses to moxonidine. Eur J Pharmacol 2007; 563:164-71. [PMID: 17382316 DOI: 10.1016/j.ejphar.2007.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/29/2007] [Accepted: 02/01/2007] [Indexed: 02/07/2023]
Abstract
In the present study we compared the effects produced by moxonidine (alpha2-adrenoceptor/imidazoline agonist) injected into the 4th cerebral ventricle and into the lateral cerebral ventricle on mean arterial pressure, heart rate and on renal, mesenteric and hindquarter vascular resistances, as well as the possible action of moxonidine on central alpha1- or alpha2-adrenoceptors to produce cardiovascular responses. Male Holtzman rats (n=7-8) anesthetized with urethane (0.5 g/kg, intravenously-i.v.) and alpha-chloralose (60 mg/kg, i.v.) were used. Moxonidine (5, 10 and 20 nmol) injected into the 4th ventricle reduced arterial pressure (-19+/-5, -30+/-7 and -43+/-8 mmHg vs. vehicle: 2+/-4 mmHg), heart rate (-10+/-6, -16+/-7 and -27+/-9 beats per minute-bpm, vs. vehicle: 4+/-5 bpm), and renal, mesenteric and hindquarter vascular resistances. Moxonidine (5, 10 and 20 nmol) into the lateral ventricle only reduced renal vascular resistance (-77+/-17%, -85+/-13%, -89+/-10% vs. vehicle: 3+/-4%), without changes on arterial pressure, heart rate and mesenteric and hindquarter vascular resistances. Pre-treatment with the selective alpha2-adrenoceptor antagonist yohimbine (80, 160 and 320 nmol) injected into the 4th ventricle attenuated the hypotension (-32+/-5, -25+/-4 and -12+/-6 mmHg), bradycardia (-26+/-11, -23+/-5 and -11+/-6 bpm) and the reduction in renal, mesenteric and hindquarter vascular resistances produced by moxonidine (20 nmol) into the 4th ventricle. Pre-treatment with yohimbine (320 nmol) into the lateral ventricle did not change the renal vasodilation produced by moxonidine (20 nmol) into the lateral ventricle. The alpha1-adrenoceptor antagonist prazosin (320 nmol) injected into the 4th ventricle did not affect the cardiovascular effects of moxonidine. However, prazosin (80, 160 and 320 nmol) into the lateral ventricle abolished the renal vasodilation (-17+/-4, -6+/-9 and 2+/-11%) produced by moxonidine. The results indicate that the decrease in renal vascular resistance due to moxonidine action in the forebrain is mediated by alpha1-adrenoceptors, while the cardiovascular effects produced by moxonidine acting in the brainstem depend at least partially on the activation of alpha2-adrenoceptors.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, 04023-060, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
43
|
Andrade CAF, De Luca LA, Colombari DSA, Menani JV. Alpha2-adrenergic activation in the lateral parabrachial nucleus induces NaCl intake under conditions of systemic hyperosmolarity. Neuroscience 2006; 142:21-8. [PMID: 16890365 DOI: 10.1016/j.neuroscience.2006.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/10/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 microl, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1+/-5.5 ml/2 h vs. vehicle: 1.8+/-0.6 ml/2 h), without changing water intake (15.8+/-3.0 ml/2 h vs. vehicle: 9.3+/-2.0 ml/2 h). However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 microl) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7+/-3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus.
Collapse
Affiliation(s)
- C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista, Rua Humaitá 1680, Araraquara, SP 14801-903, Brazil
| | | | | | | |
Collapse
|