1
|
McCormack RM, Chandran AS, Lhatoo SD, Pati S, Li Z, Harris K, Lacuey N, Kalamangalam G, Thompson S, Tandon N. Laser Ablation of Periventricular Nodular Heterotopia for Medically Refractory Epilepsy. Ann Neurol 2024; 96:1174-1184. [PMID: 39297387 DOI: 10.1002/ana.27059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Periventricular nodular heterotopia (PVNH) is the most common neuronal heterotopia, frequently resulting in pharmaco-resistant epilepsy. Here, we characterize variables that predict good epilepsy outcomes following surgical intervention using stereo-electroencephalography (SEEG) -informed magnetic resonance-guided laser interstitial thermal therapy (MRgLITT). METHODS A retrospective review of consecutive cases from a single high-volume epilepsy referral center identified patients who underwent SEEG evaluation for PVNH to characterize the intervention and outcomes. RESULTS Thirty-nine patients underwent SEEG-guided MRgLITT of the seizure onset zone (SoZ) in PVNH and associated epileptic tissue. PVNH and polymicrogyria (PMG) were densely sampled with a mean of 16.5 (SD = 2)/209.4 (SD = 36.9) SEEG probes/recording contacts per patient. Ablation principally targeted just the PVNH and cortex that was abnormal on imaging was ablated (5 patients) only if implicated in the SoZ. Volumetric analyses revealed a high percentage of PVNH SoZ ablation (96.6%, SD = 5.3%) in unilateral and bilateral (92.9%, SD = 7.2%) cases. Mean follow-up duration was 31.4 months (SD = 20.9). Seizure freedom (ILAE 1) was excellent: unilateral PVNH without other imaging abnormalities, 80%; PVNH with mesial temporal sclerosis (MTS) or PMG, 63%; bilateral PVNH, 50%. SoZ ablation percentage significantly impacted surgical outcomes (p < 0.001). INTERPRETATION PVNH plays a central role in seizure genesis as revealed by dense recordings and selective targeting by LITT. MRgLITT represents a transformative technological advance in PVNH-associated epilepsy with seizure control outcomes consistent with those seen in focal lesional epilepsies. In localized unilateral cases and otherwise normal imaging, PVNH ablation without invasive recordings may be considered, and this approach deserves to be explored further. ANN NEUROL 2024;96:1174-1184.
Collapse
Affiliation(s)
- Ryan M McCormack
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Arjun S Chandran
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Samden D Lhatoo
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Sandipan Pati
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Zhouxuan Li
- Department of Biostatistics and Data Science, The University of Texas School of Public Health, Dallas, TX, USA
| | - Katherine Harris
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Nuria Lacuey
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | | | - Stephen Thompson
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nitin Tandon
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
2
|
Frazzini V, Whitmarsh S, Lehongre K, Yger P, Lemarechal JD, Mathon B, Adam C, Hasboun D, Lambrecq V, Navarro V. Human periventricular nodular heterotopia shows several interictal epileptic patterns and hyperexcitability of neuronal firing. Front Neurol 2022; 13:1022768. [PMID: 36438938 PMCID: PMC9695411 DOI: 10.3389/fneur.2022.1022768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Periventricular nodular heterotopia (PNH) is a malformation of cortical development that frequently causes drug-resistant epilepsy. The epileptogenicity of ectopic neurons in PNH as well as their role in generating interictal and ictal activity is still a matter of debate. We report the first in vivo microelectrode recording of heterotopic neurons in humans. Highly consistent interictal patterns (IPs) were identified within the nodules: (1) Periodic Discharges PLUS Fast activity (PD+F), (2) Sporadic discharges PLUS Fast activity (SD+F), and (3) epileptic spikes (ES). Neuronal firing rates were significantly modulated during all IPs, suggesting that multiple IPs were generated by the same local neuronal populations. Furthermore, firing rates closely followed IP morphologies. Among the different IPs, the SD+F pattern was found only in the three nodules that were actively involved in seizure generation but was never observed in the nodule that did not take part in ictal discharges. On the contrary, PD+F and ES were identified in all nodules. Units that were modulated during the IPs were also found to participate in seizures, increasing their firing rate at seizure onset and maintaining an elevated rate during the seizures. Together, nodules in PNH are highly epileptogenic and show several IPs that provide promising pathognomonic signatures of PNH. Furthermore, our results show that PNH nodules may well initiate seizures.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stephen Whitmarsh
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, Paris, France
| | - Jean-Didier Lemarechal
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Bertrand Mathon
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- AP-HP, Pitié Salpêtrière Hospital, Department of Neurosurgery, Paris, France
| | - Claude Adam
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
| | - Dominique Hasboun
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- AP-HP, Pitié Salpêtrière Hospital, Department de Neuroradiology, Paris, France
| | - Virginie Lambrecq
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Navarro
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- *Correspondence: Vincent Navarro
| |
Collapse
|
3
|
Martineau FS, Sahu S, Plantier V, Buhler E, Schaller F, Fournier L, Chazal G, Kawasaki H, Represa A, Watrin F, Manent JB. Correct Laminar Positioning in the Neocortex Influences Proper Dendritic and Synaptic Development. Cereb Cortex 2019; 28:2976-2990. [PMID: 29788228 PMCID: PMC6041803 DOI: 10.1093/cercor/bhy113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.
Collapse
Affiliation(s)
| | - Surajit Sahu
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | | | | | | | | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Alfonso Represa
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | |
Collapse
|
4
|
Kielbinski M, Setkowicz Z, Gzielo K, Janeczko K. Profiles of gene expression in the hippocampal formation of rats with experimentally-induced brain dysplasia. Dev Neurobiol 2018; 78:718-735. [DOI: 10.1002/dneu.22595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Kinga Gzielo
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| |
Collapse
|
5
|
Pizzo F, Roehri N, Catenoix H, Medina S, McGonigal A, Giusiano B, Carron R, Scavarda D, Ostrowsky K, Lepine A, Boulogne S, Scholly J, Hirsch E, Rheims S, Bénar CG, Bartolomei F. Epileptogenic networks in nodular heterotopia: A stereoelectroencephalography study. Epilepsia 2017; 58:2112-2123. [DOI: 10.1111/epi.13919] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Francesca Pizzo
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Nicolas Roehri
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Samuel Medina
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Aileen McGonigal
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Clinical Neurophysiology; APHM; Timone Hospital; Marseille France
| | - Bernard Giusiano
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Romain Carron
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Functional and Stereotactic Neurosurgery; APHM; Timone Hospital; Marseille France
| | - Didier Scavarda
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Functional and Stereotactic Neurosurgery; APHM; Timone Hospital; Marseille France
| | - Karine Ostrowsky
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Anne Lepine
- Pediatric Neurology Department; Timone Hospital; APHM; Marseille France
| | - Sébastien Boulogne
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Julia Scholly
- Medical and Surgical Epilepsy Unit; Hautepierre Hospital; University of Strasbourg; Strasbourg France
| | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit; Hautepierre Hospital; University of Strasbourg; Strasbourg France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Christian-George Bénar
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Fabrice Bartolomei
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Clinical Neurophysiology; APHM; Timone Hospital; Marseille France
| |
Collapse
|
6
|
Models of cortical malformation--Chemical and physical. J Neurosci Methods 2015; 260:62-72. [PMID: 25850077 DOI: 10.1016/j.jneumeth.2015.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model causes microgyria and heterotopia. Intraperitoneal injections of carmustine 1-3-bis-chloroethyl-nitrosurea (BCNU) to pregnant rats produces laminar disorganization, heterotopias and cytomegalic neurons. The ibotenic acid model induces focal cortical malformations, which resemble human microgyria and ulegyria. Cortical dysplasia can be also observed following prenatal exposure to ethanol, cocaine or antiepileptic drugs. All these models of cortical malformations are characterized by a pronounced hyperexcitability, few of them also produce spontaneous epileptic seizures. This dysfunction results from an impairment in GABAergic inhibition and/or an increase in glutamatergic synaptic transmission. The cortical region initiating or contributing to this hyperexcitability may not necessarily correspond to the site of the focal malformation. In some models wide-spread molecular and functional changes can be observed in remote regions of the brain, where they cause pathophysiological activities. This paper gives an overview on different animal models of cortical malformations, which are mostly used in rodents and which mimic the pathology and to some extent the pathophysiology of neuronal migration disorders associated with epilepsy in humans.
Collapse
|
7
|
Doisy ET, Wenzel HJ, Mu Y, Nguyen DV, Schwartzkroin PA. Nodule excitability in an animal model of periventricular nodular heterotopia: c-fos activation in organotypic hippocampal slices. Epilepsia 2015; 56:626-35. [PMID: 25752321 DOI: 10.1111/epi.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.
Collapse
Affiliation(s)
- Emily T Doisy
- Department of Neurological Surgery, University of California, Davis, Davis, California, U.S.A
| | | | | | | | | |
Collapse
|
8
|
Watrin F, Manent JB, Cardoso C, Represa A. Causes and consequences of gray matter heterotopia. CNS Neurosci Ther 2014; 21:112-22. [PMID: 25180909 DOI: 10.1111/cns.12322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to review the pathophysiological bases of gray matter heterotopia and to appreciate their involvement in brain cortical development and functional consequences, namely epilepsy. The development of the cerebral cortex results from complex sequential processes including cell proliferation, cell migration, cortical organization, and formation of neuronal networks. Disruption of these steps yields different types of cortical malformations including gray matter heterotopia, characterized by the ectopic position of neurons along the ventricular walls or in the deep white matter. Cortical malformations are major causes of epilepsy, being responsible for up to 40% of drug-resistant epilepsy, and the cognitive level of affected patients varies from normal to severely impaired. This review reports data from human patients and animal models highlighting the genetic causes for these disorders affecting not only neuronal migration but also the proliferation of cortical progenitors. Therefore, gray matter heterotopias should not be considered as solely due to an abnormal neuronal migration and classifying them as such may be too restrictive. The review will also summarize literature data indicating that besides ectopic neurons, neighbor cortical areas also play a consistent role in epileptogenesis, supporting the notion that plastic changes secondary to the initial malformation are instrumental in the pathophysiology of epilepsy in affected patients.
Collapse
Affiliation(s)
- Françoise Watrin
- INSERM, INMED, Marseille, France; Aix-Marseille University, UMR 901, Marseille, France
| | | | | | | |
Collapse
|
9
|
Luhmann HJ, Kilb W, Clusmann H. Malformations of cortical development and neocortical focus. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:35-61. [PMID: 25078498 DOI: 10.1016/b978-0-12-418693-4.00003-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Abstract
Cortical dysplasia of various types, reflecting abnormalities of brain development, have been closely associated with epileptic activities. Yet, there remains considerable discussion about if/how these structural lesions give rise to seizure phenomenology. Animal models have been used to investigate the cause-effect relationships between aberrant cortical structure and epilepsy. In this article, we discuss three such models: (1) the Eker rat model of tuberous sclerosis, in which a gene mutation gives rise to cortical disorganization and cytologically abnormal cellular elements; (2) the p35 knockout mouse, in which the genetic dysfunction gives rise to compromised cortical organization and lamination, but in which the cellular elements appear normal; and (3) the methylazoxymethanol-exposed rat, in which time-specific chemical DNA disruption leads to abnormal patterns of cell formation and migration, resulting in heterotopic neuronal clusters. Integrating data from studies of these animal models with related clinical observations, we propose that the neuropathologic features of these cortical dysplastic lesions are insufficient to determine the seizure-initiating process. Rather, it is their interaction with a more subtly disrupted cortical "surround" that constitutes the circuitry underlying epileptiform activities as well as seizure propensity and ictogenesis.
Collapse
Affiliation(s)
- Philip A Schwartzkroin
- Department of Neurological Surgery, University of California-Davis, One Shields Ave., Davis, CA 95616, U.S.A.
| | | |
Collapse
|
11
|
Tschuluun N, Jürgen Wenzel H, Doisy ET, Schwartzkroin PA. Initiation of epileptiform activity in a rat model of periventricular nodular heterotopia. Epilepsia 2011; 52:2304-14. [PMID: 21933177 DOI: 10.1111/j.1528-1167.2011.03264.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Periventricular nodular heterotopia (PNH) is, in humans, often associated with difficult-to-control epilepsy. However, there is considerable controversy about the role of the PNH in seizure generation and spread. To study this issue, we have used a rat model in which injection of methylazoxymethanol (MAM) into pregnant rat dams produces offspring with nodular heterotopia-like brain abnormalities. METHODS Electrophysiologic methods were used to examine the activity of the MAM-induced PNH relative to activity in the neighboring hippocampus and overlying neocortex. Recordings were obtained simultaneously from these three structures in slice preparations from MAM-exposed rats and in intact animals. Bath application or systemic injection of bicuculline was used to induce epileptiform activity. KEY FINDINGS In the in vitro slice, epileptiform discharge was generally initiated in hippocampus. In some cases, independent PNH discharge occurred, but the PNH never "led" discharges in hippocampus or neocortex. Intracellular recordings from PNH neurons confirmed that these cells received synaptic drive from both hippocampus and neocortex, and sent axonal projections to these structures-consistent with anatomic observations of biocytin-injected PNH cells. In intact animal preparations, bicuculline injection resulted in epileptiform discharge in all experiments, with a period of ictal-like electrographic activity typically initiated within 2-3 min after drug injection. In almost all animals, the onset of ictus was seen synchronously across PNH, hippocampal, and neocortical electrodes; in a few cases, the PNH electrode (histologically confirmed) did not participate, but in no case was activity initiated in the PNH electrode. Interictal discharge was also synchronized across all three electrodes; again, the PNH never "led" the other two electrodes, and typically followed (onset several milliseconds after hippocampal/neocortical discharge onset). SIGNIFICANCE These results do not support the hypothesis that the PNH lesion is the primary epileptogenic site, since it does not initiate or lead epileptiform activity that subsequently propagates to other brain regions.
Collapse
Affiliation(s)
- Naranzogt Tschuluun
- Department of Neurological Surgery, University of California-Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
12
|
Gabel LA. Layer I neocortical ectopia: cellular organization and local cortical circuitry. Brain Res 2011; 1381:148-58. [PMID: 21256119 DOI: 10.1016/j.brainres.2011.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Focal cortical dysplasia (FCD) are associated with neurological disorders and cognitive impairments in humans. Molecular layer ectopia, clusters of misplaced cells in layer I of the neocortex, have been identified in patients with developmental dyslexia and psychomotor retardation. Mouse models of this developmental disorder display behavioral impairments and increased seizure susceptibility. Although there is a correlation between cortical malformations and neurological dysfunction, little is known about the morphological and physiological properties of cells within cortical malformations. In the present study we used electrophysiological and immunocytochemical analyses to examine the distribution of neuronal and non-neuronal cell types within and surrounding layer I neocortical ectopia in NXSMD/EiJ mice. We show that cells within ectopia have membrane properties of both pyramidal and a variety of non-pyramidal cell types, including fast-spiking cells. Immunocytochemical analysis for different interneuronal subtypes demonstrates that ectopia contain nonpyramidal cells immunoreactive for calbindin-D28K (CALB), parvalbumin (PARV), and calretinin (CR). Ectopia also contains astrocytes, positive for glial fibrillary acidic protein (GFAP) and oligodendrocyte precursor cells positive for NG2 proteoglycan (NG2). Lastly, we provide electrophysiological and morphological evidence to demonstrate that cells within ectopia receive input from cells within layers I, upper and deeper II/III, and V and provide outputs to cells within deep layer II/III and layer V, but not layers I and upper II/III. These results indicate that ectopia contain cells of different lineages with diverse morphological and physiological properties, and appear to cause disruptions in local cortical circuitry.
Collapse
Affiliation(s)
- Lisa Ann Gabel
- Department of Psychology and Program in Neuroscience, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
13
|
Baka M, Uyanikgil Y, Ateş U, Kültürsay N. Investigation of maternal melatonin effect on the hippocampal formation of newborn rat model of intrauterine cortical dysplasia. Childs Nerv Syst 2010; 26:1575-81. [PMID: 20461523 DOI: 10.1007/s00381-010-1147-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Cortical dysplasia is a cortical malformation resulting from any developmental defects during different periods of development. This study aims to investigate the hippocampal histopathological alterations in the neonates with cortical dysplasia due to the prenatal exposure to carmustine (1,3-bis (2-chloroethyl)-1-nitrosourea; BCNU) and the possible effects of prophylaxis with melatonin, a neuroprotective agent. METHODS Wistar albino female rats were randomly divided into four experimental groups; control, melatonin-treated, BCNU-exposed and BCNU-exposed+melatonin-treated. Light microscopy and immunohistochemistry were carried out on the newborn hippocampus. RESULTS Histopathology of hippocampus from the control and melatonin-treated groups showed continuity of migration and maturation as pathognomonic signs of the normal newborn hippocampus. Hippocampal cortex from the newborns exposed in utero to BCNU showed the histology of early embryonic hippocampal formation with immunohistochemical increase in the number of nestin positive cells and decreases in the immunoreactivity of glial fibrillary acidic protein (GFAP) and synaptophysin. These findings indicate a significant delay in hippocampal maturation, migration, and synaptogenesis. Intrauterine treatment of BCNU-exposed rats with melatonin resulted in histopathological features almost similar to control group. CONCLUSION It has been concluded that cortical dysplasia induced by intrauterine BCNU administration results in delayed hippocampal maturation, which is successfully restored by intrauterine melatonin treatment.
Collapse
Affiliation(s)
- Meral Baka
- Department of Histology and Embryology, Ege University School of Medicine, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
14
|
Nishibayashi H, Miki J, Uematsu Y, Itakura T. Closed-lip schizencephaly around the central sulcus with intractable epilepsy treated by peri-lesional focus resection. Neurol Med Chir (Tokyo) 2007; 47:519-24. [PMID: 18037809 DOI: 10.2176/nmc.47.519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 24-year-old man presented with closed-lip schizencephaly around the right central sulcus manifesting as an 11-year history of intractable epilepsy. Mild motor paresis in the left extremities and mental retardation were observed. Tonic posture with bilateral facial tonic contraction was asymmetrical, predominantly in the left extremities. Magnetic resonance imaging demonstrated closed-lip schizencephaly around the right central sulcus. The epileptogenic zone was determined in the supplementary motor area, and premotor and primary sensorimotor cortices using invasive recordings. As the thickened cortex was considered functional, corticectomy of the supplementary motor area and premotor area was performed, preserving the primary sensorimotor area. Histological examination revealed marked cortico-subcortical gliosis, particularly in the medial part of the resection. Asymmetrical tonic postural seizure disappeared completely after surgery. Medically intractable epilepsy with schizencephaly represents a considerable challenge in epilepsy surgery. Partial corticectomy adjacent to the thickened cortex was effective for seizure control in a patient with closed-lip schizencephaly around the central sulcus.
Collapse
Affiliation(s)
- Hiroki Nishibayashi
- Department of Neurological Surgery, Wakayama Medical University, Kimiidera, Wakayama, Japan.
| | | | | | | |
Collapse
|
15
|
Uyanikgil Y, Baka M, Ateş U, Turgut M, Yavaşoğlu A, Ulker S, Sözmen EY, Sezer E, Elmas C, Yurtseven ME. Neuroprotective effects of melatonin upon the offspring cerebellar cortex in the rat model of BCNU-induced cortical dysplasia. Brain Res 2007; 1160:134-44. [PMID: 17572393 DOI: 10.1016/j.brainres.2007.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Cortical dysplasia is a malformation characterized by defects in proliferation, migration and maturation. This study was designed to evaluate the alterations in offspring rat cerebellum induced by maternal exposure to carmustine-[1,3-bis (2-chloroethyl)-1-nitrosoure] (BCNU) and to investigate the effects of exogenous melatonin upon cerebellar BCNU-induced cortical dysplasia, using histological and biochemical analyses. Pregnant Wistar rats were assigned to five groups: intact-control, saline-control, melatonin-treated, BCNU-exposed and BCNU-exposed plus melatonin. Rats were exposed to BCNU on embryonic day 15 and melatonin was given until delivery. Immuno/histochemistry and electron microscopy were carried out on the offspring cerebellum, and levels of malondialdehyde and superoxide dismutase were determined. Histopathologically, typical findings were observed in the cerebella from the control groups, but the findings consistent with early embryonic development were noted in BCNU-exposed cortical dysplasia group. There was a marked increase in the number of TUNEL positive cells and nestin positive cells in BCNU-exposed group, but a decreased immunoreactivity to glial fibrillary acidic protein, synaptophysin and transforming growth factor beta1 was observed, indicating a delayed maturation, and melatonin significantly reversed these changes. Malondialdehyde level in BCNU-exposed group was higher than those in control groups and melatonin decreased malondialdehyde levels in BCNU group (P<0.01), while there were no significant differences in the superoxide dismutase levels between these groups. These data suggest that exposure of animals to BCNU during pregnancy leads to delayed maturation of offspring cerebellum and melatonin protects the cerebellum against the effects of BCNU.
Collapse
Affiliation(s)
- Yiğit Uyanikgil
- Department of Histology and Embryology, Ege University School of Medicine, TR-35100 Izmir, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zsombok A, Jacobs KM. Postsynaptic currents prior to onset of epileptiform activity in rat microgyria. J Neurophysiol 2007; 98:178-86. [PMID: 17475719 DOI: 10.1152/jn.00106.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Structural malformations of the cortex, arising as a result of genetic mutation or injury during development are associated with dyslexia, epilepsy, and other neurological deficits. We have used a rat model of a microgyral malformation to examine mechanisms of epileptogenesis. Our previous studies showed that the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded in neocortical layer V pyramidal neurons is increased in malformed cortex at a time when field potential epileptiform events can be evoked. Here we show that the increase occurs at an age before onset of cortical epileptiform activity and at a time when the frequency of mEPSCs in control layer V pyramidal neurons is stable. An increase in the frequency of spontaneous (s)EPSCs in layer V pyramidal neurons of malformed cortex occurs earlier than that for mEPSCs, suggesting that there may additionally be alterations in intrinsic properties that increase the excitability of the cortical afferents. Frequencies of EPSC bursts and late evoked activity were also increased in malformed cortex. These results suggest that a hyperinnervation of layer V pyramidal neurons by excitatory afferents occurs as an active process likely contributing to subsequent development of field epileptiform events.
Collapse
Affiliation(s)
- A Zsombok
- Dept of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
17
|
Tschuluun N, Wenzel HJ, Schwartzkroin PA. Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res 2006; 73:53-64. [PMID: 17011168 PMCID: PMC1905148 DOI: 10.1016/j.eplepsyres.2006.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/26/2006] [Accepted: 08/17/2006] [Indexed: 12/12/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by multi-organ pathologies. Most TSC patients exhibit seizures, usually starting in early childhood. The neuropathological hallmarks of the disease - cortical tubers, containing cytopathological neuronal and glial cell types - appear to be the source of seizure initiation. However, the contribution of these aberrant cell populations to TSC-associated epilepsies is not fully understood. To gain further insight, investigators have attempted to generate animal models with TSC-like brain abnormalities. In the current study, we focused on the Eker rat, in which there is a spontaneous mutation of the TSC2 gene (TSC2+/-). We attempted to exacerbate TSC-like brain pathologies with a "second-hit" strategy - exposing young pups to ionizing irradiation of different intensities, and at different developmental timepoints (between E18 and P6). We found that the frequency of occurrence of dysmorphic neurons and giant astrocytes was strongly dependent on irradiation dose, and weakly dependent on timing of irradiation in Eker rats, but not in irradiated normal controls. The frequency of TSC-like pathology was progressive; there were many more abnormal cells at 3 months compared to 1 month post-irradiation. Measures of seizure propensity (flurothyl seizure latency) and brain excitability (paired-pulse and post-tetanic stimulation studies in vitro), however, showed no functional changes associated with the appearance of TSC-like cellular abnormalities in irradiated Eker rats.
Collapse
Affiliation(s)
- Naranzogt Tschuluun
- Department of Neurological Surgery, University of California-Davis, School of Medicine, Neuroscience Bldg, 1515 Newton Cour,t Davis, CA 95618, USA.
| | | | | |
Collapse
|