1
|
Nartey MN, Peña-Castillo L, LeGrow M, Doré J, Bhattacharya S, Darby-King A, Carew SJ, Yuan Q, Harley CW, McLean JH. Learning-induced mRNA alterations in olfactory bulb mitral cells in neonatal rats. ACTA ACUST UNITED AC 2020; 27:209-221. [PMID: 32295841 PMCID: PMC7164515 DOI: 10.1101/lm.051177.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.
Collapse
Affiliation(s)
- Michaelina N Nartey
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X5, Canada
| | - Megan LeGrow
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Jules Doré
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Sriya Bhattacharya
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Andrea Darby-King
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Samantha J Carew
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Qi Yuan
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X9, Canada
| | - John H McLean
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| |
Collapse
|
2
|
Ghosh A, Carew SJ, Chen X, Yuan Q. The Role of L-type Calcium Channels in Olfactory Learning and Its Modulation by Norepinephrine. Front Cell Neurosci 2017; 11:394. [PMID: 29321726 PMCID: PMC5732138 DOI: 10.3389/fncel.2017.00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022] Open
Abstract
L type calcium channels (LTCCs) are prevalent in different systems and hold immense importance for maintaining/performing selective functions. In the nervous system, CaV1.2 and CaV1.3 are emerging as critical modulators of neuronal functions. Although the general role of these calcium channels in modulating synaptic plasticity and memory has been explored, their role in olfactory learning is not well understood. In this review article we first discuss the role of LTCCs in olfactory learning especially focusing on early odor preference learning in neonate rodents, presenting evidence that while NMDARs initiate stimulus-specific learning, LTCCs promote protein-synthesis dependent long-term memory (LTM). Norepinephrine (NE) release from the locus coeruleus (LC) is essential for early olfactory learning, thus noradrenergic modulation of LTCC function and its implication in olfactory learning is discussed here. We then address the differential roles of LTCCs in adult learning and learning in aged animals.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Samantha J Carew
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xihua Chen
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Qi Yuan
- Laboratory of Neuroscience, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
3
|
Bhattacharya S, Mukherjee B, Doré JJE, Yuan Q, Harley CW, McLean JH. Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. ACTA ACUST UNITED AC 2017; 24:543-551. [PMID: 28916629 PMCID: PMC5602343 DOI: 10.1101/lm.045799.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in neonate rat pups that normally produces only 24-h memory to test behavior and examine receptor protein expression. Our behavioral studies showed that intrabulbar infusion of TSA, prior to pairing of the conditioned stimulus (peppermint odor) with the unconditioned stimulus (tactile stimulation), prolonged 24-h odor preference memory for at least 9 d. The prolonged odor preference memory was selective for the paired odor and was also observed using a specific HDAC6 inhibitor, tubacin, supporting a role for histone acetylation in associative memory. Immunoblot analysis showed that GluA1 receptor membrane expression in the olfactory bulbs of the TSA-treated group was significantly increased at 48 h unlike control rats without TSA. Immunohistochemistry revealed significant increase of GluA1 expression in olfactory bulb glomeruli 5 d after training. These results extend previous evidence for a close relationship between enhanced GluA1 receptor membrane expression and memory expression. Together, these findings provide a new single-trial appetitive model for understanding the support and maintenance of memories of varying duration.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Bandhan Mukherjee
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Jules J E Doré
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Qi Yuan
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3X9
| | - John H McLean
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| |
Collapse
|
4
|
Tong MT, Peace ST, Cleland TA. Properties and mechanisms of olfactory learning and memory. Front Behav Neurosci 2014; 8:238. [PMID: 25071492 PMCID: PMC4083347 DOI: 10.3389/fnbeh.2014.00238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system—particularly olfactory bulb—comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.
Collapse
Affiliation(s)
- Michelle T Tong
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| | - Shane T Peace
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Thomas A Cleland
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
5
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
6
|
Grimes MT, Harley CW, Darby-King A, McLean JH. PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate- and long-term, but not short-term, memories. Learn Mem 2012; 19:107-15. [PMID: 22354948 DOI: 10.1101/lm.024489.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.
Collapse
Affiliation(s)
- Matthew T Grimes
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3V6
| | | | | | | |
Collapse
|
7
|
Cui W, Darby-King A, Grimes MT, Howland JG, Wang YT, McLean JH, Harley CW. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model. Learn Mem 2011; 18:283-91. [PMID: 21498562 DOI: 10.1101/lm.1987711] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in the neonate rat. Rat pups were given a single pairing of peppermint and 2 mg/kg isoproterenol, which produces a 24-h, but not a 48-h, peppermint preference in the 7-d-old rat pup. GluA1 PKA-dependent phosphorylation peaked 10 min after the 10-min training trial and returned to baseline within 90 min. At 24 h, GluA1 subunits did not change overall but were significantly increased in synaptoneurosomes, consistent with increased membrane insertion. Immunohistochemistry revealed a significant increase in GluA1 subunits in olfactory bulb glomeruli, the targets of olfactory nerve axons. Glomerular increases were seen at 3 and 24 h after odor exposure in trained pups, but not in control pups. GluA1 increases were not seen as early as 10 min after training and were no longer observed 48 h after training when odor preference is no longer expressed behaviorally. Thus, the pattern of increased GluA1 membrane expression closely follows the memory timeline. Further, blocking GluA1 insertion using an interference peptide derived from the carboxyl tail of the GluA1 subunit inhibited 24 h odor preference memory providing causative support for our hypothesis. PKA-mediated GluA1 phosphorylation and later GluA1 insertion could, conjointly, provide increased AMPA function to support both short-term and long-term appetitive memory.
Collapse
Affiliation(s)
- Wen Cui
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's NL, A1B 3V6 Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Grimes MT, Smith M, Li X, Darby-King A, Harley CW, McLean JH. Mammalian intermediate-term memory: new findings in neonate rat. Neurobiol Learn Mem 2011; 95:385-91. [PMID: 21296674 DOI: 10.1016/j.nlm.2011.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 01/26/2023]
Abstract
The ability of anisomycin, a translation inhibitor, and actinomycin, a transcription inhibitor to disrupt a cAMP/PKA-dependent odor preference memory in neonate rat was examined. Previous reports in invertebrates had described a novel translation-dependent intermediate-term memory dissected with these inhibitors, but similar effects have not been reported in mammalian memory systems. When anisomycin was infused into the olfactory bulb after the pairing of peppermint odor and the β-adrenoceptor agonist isoproterenol (2mg/kg), short-term memory (1 or 3h) was intact, but intermediate (5h) and long-term (24h) memory was disrupted. When actinomycin was infused, only long-term memory was disrupted. This pattern of results is consistent with that reported in invertebrates for intermediate-term memory and led us to try a lower level of the unconditioned stimulus (isoproterenol) to isolate intermediate-term memory from long-term memory. Pups given a dose of 1.5mg/kg isoproterenol paired with peppermint odor showed memory for peppermint 5h, but not 24h, after training. These observations in the rat pup olfactory system parallel short-, intermediate- and long-term memory characteristics previously described in invertebrates. Odor preference memory in neonate rodents offers a tool to increase our understanding of the properties and mechanisms of multi-phasic memory in mammals.
Collapse
Affiliation(s)
- Matthew T Grimes
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Kermen F, Sultan S, Sacquet J, Mandairon N, Didier A. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory. PLoS One 2010; 5:e12118. [PMID: 20730099 PMCID: PMC2921340 DOI: 10.1371/journal.pone.0012118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/01/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. CONCLUSION/SIGNIFICANCE We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.
Collapse
Affiliation(s)
- Florence Kermen
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR 5020 Neurosciences Sensorielles, Comportement, Cognition, Lyon, France.
| | | | | | | | | |
Collapse
|
10
|
Languille S, Richer P, Hars B. Approach memory turns to avoidance memory with age. Behav Brain Res 2009; 202:278-84. [PMID: 19463713 DOI: 10.1016/j.bbr.2009.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 12/31/2022]
Abstract
Ontogenetic modification of an early memory is relatively poorly understood. And an important question is whether the memory output is more determined by the age at acquisition or at retention? Here we explore the expression of odor-shock conditioning in the rat pup. Acquisition at post-natal day 6 (P6) leads to an approach response and at post-natal day 12 (P12) to an avoidance response when the retention test is 24h later. In both cases, anisomycin injected immediately post-acquisition induced a retrograde amnesia. Controls show that, in either case, short-term memory measured 4h after acquisition is not impaired and that anisomycin given after a 4h delay has no effect. Thus, at the two ages, memory involves a consolidation process. The main result is the spontaneous reversal of the conditioned response from approach acquired at P6 to avoidance when tested at P13. This phenomenon is robust as it is observed in three conditions. Moreover, amnesia induced at P6 is maintained at P13. Results are discussed in terms of maturation and/or competition of the memory traces.
Collapse
|
11
|
Alcohol-induced retrograde memory impairment in rats: prevention by caffeine. Psychopharmacology (Berl) 2008; 201:361-71. [PMID: 18758756 DOI: 10.1007/s00213-008-1294-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 07/30/2008] [Indexed: 01/12/2023]
Abstract
RATIONALE Ethanol and caffeine are two of the most widely consumed drugs in the world, often used in the same setting. Animal models may help to understand the conditions under which incidental memories formed just before ethanol intoxication might be lost or become difficult to retrieve. OBJECTIVES Ethanol-induced retrograde amnesia was investigated using a new odor-recognition test. MATERIALS AND METHODS Rats thoroughly explored a wood bead taken from the cage of another rat, and habituated to this novel odor (N1) over three trials. Immediately following habituation, rats received saline, 25 mg/kg pentylenetetrazol (a seizure-producing agent known to cause retrograde amnesia) to validate the test, 1.0 g/kg ethanol, or 3.0 g/kg ethanol. The next day, they were presented again with N1 and also a bead from a new rat's cage (N2). RESULTS Rats receiving saline or the lower dose of ethanol showed overnight memory for N1, indicated by preferential exploration of N2 over N1. Rats receiving pentylenetetrazol or the higher dose of ethanol appeared not to remember N1, in that they showed equal exploration of N1 and N2. Caffeine (5 mg/kg), delivered either 1 h after the higher dose of ethanol or 20 min prior to habituation to N1, negated ethanol-induced impairment of memory for N1. A combination of a phosphodiesterase-5 inhibitor and an adenosine A(2A) antagonist, mimicking two major mechanisms of action of caffeine, likewise prevented the memory impairment, though either drug alone had no such effect. Binge alcohol can induce retrograde, caffeine-reversible disruption of social odor memory storage or recall.
Collapse
|
12
|
Christie-Fougere MM, Darby-King A, Harley CW, McLean JH. Calcineurin inhibition eliminates the normal inverted U curve, enhances acquisition and prolongs memory in a mammalian 3'-5'-cyclic AMP-dependent learning paradigm. Neuroscience 2008; 158:1277-83. [PMID: 19041926 DOI: 10.1016/j.neuroscience.2008.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 01/26/2023]
Abstract
The role protein phosphatase 2B (calcineurin, CaN) plays in learning and memory has received a significant amount of attention due to its promotion of the dephosphorylation of 3'-5'-cyclic AMP response element binding protein (CREB). Researchers have ascertained that overexpression of CaN is associated with memory retention deficits [Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A (2001) Calcineurin links Ca(2+) dysregulation with brain aging. J Neurosci 21:4066-4073; Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39-49], while CaN inhibition enhances learning and memory [Gerdjikov TV, Beninger RJ (2005) Differential effects of calcineurin inhibition and protein kinase A activation on nucleus accumbens amphetamine-produced conditioned place preference in rats. Eur J Neurosci 22:697-705; Ikegami S, Inokuchi K (2000) Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience 98:637-646]. The present study hypothesized that infusion of a CaN inhibitor (FK506) bilaterally into the olfactory bulbs of postnatal day 6 Sprague Dawley rat pups would prolong the duration of a conditioned odor preference and retard cyclic AMP response element binding protein dephosphorylation. A 2 mg/kg s.c. injection of isoproterenol (ISO, beta-adrenoceptor agonist) was paired with a 10 min exposure to peppermint and subsequently an infusion of FK506. Immunohistochemistry for phosphorylated 3'-5'-cyclic AMP response element binding protein (pCREB) revealed that unilateral infusion of FK506 resulted in an amplification of phosphorylated CREB in the olfactory bulb 40 min after training compared with saline-infused bulbs. Pups infused bilaterally with FK506 maintained a learned preference for peppermint 48, 72 and 96 h after training. CaN inhibition also modified the conventional inverted U curve obtained when ISO is used to replace stroking, as the unconditioned stimulus. When pups were infused with FK506, learning occurred with sub- and supra-optimal doses of ISO indicating that CaN overcomes non-optimal effects ISO may have on learning. We demonstrate that CaN inhibition can extend the duration of conditioned olfactory memory and may provide a target for memory prolongation that is superior to even phosphodiesterase inhibition observed in previous studies.
Collapse
Affiliation(s)
- M M Christie-Fougere
- Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, Canada A1B 3V6
| | | | | | | |
Collapse
|
13
|
Cui W, Smith A, Darby-King A, Harley CW, McLean JH. A temporal-specific and transient cAMP increase characterizes odorant classical conditioning. Learn Mem 2007; 14:126-33. [PMID: 17337703 PMCID: PMC1838553 DOI: 10.1101/lm.496007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory bulb mitral cells. Using both drug and natural unconditioned stimuli we found effective learning was associated with an increase in cAMP at the end of the conditioning trial, followed by a decrease 5 min later. This early timing of a transient cAMP increase occurred only when the odor was paired with an effective drug or natural unconditioned stimulus (US). The data support the hypothesis that the rate of adenylate cyclase activation is enhanced by pairing calcium and G-protein activation and that the timing of transient cAMP signaling is critical to the initiation of classical conditioning.
Collapse
Affiliation(s)
- Wen Cui
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Andrew Smith
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Andrea Darby-King
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Carolyn W. Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X9, Canada
| | - John H. McLean
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
- Corresponding author.E-mail ; fax (709) 777-7010
| |
Collapse
|
14
|
Grissom N, Iyer V, Vining C, Bhatnagar S. The physical context of previous stress exposure modifies hypothalamic-pituitary-adrenal responses to a subsequent homotypic stress. Horm Behav 2007; 51:95-103. [PMID: 17054953 DOI: 10.1016/j.yhbeh.2006.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/29/2006] [Accepted: 08/29/2006] [Indexed: 11/21/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis becomes less responsive to some types of repeated stress over time, a process termed habituation. Many facets of the stressful stimulus can modify such HPA responses to stressors, such as predictability and controllability. However, the physical context in which the stressor occurred may also provide a discriminative stimulus that can affect the HPA response to that stressor. In the present study, we examined whether a change in the context in which stress exposure occurs can alter HPA responses to a subsequent [corrected] homotypic stressor. Three separate contexts were produced by manipulating odor cues. Rats housed in the 3 context rooms exhibited similar HPA responses to acute 30-min restraint or repeated (8th) 30-min restraint in their home environments. However, rats that were restrained for 30 min per day for 7 days in a room in one context and then restrained on day 8 in a novel context exhibited attenuated habituation compared to rats restrained on day 8 in the familiar context. These results provide evidence that repeated stress-induced HPA activity depends, in part, on the context in which the stress is experienced.
Collapse
Affiliation(s)
- Nicola Grissom
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
15
|
Harley CW, Darby-King A, McCann J, McLean JH. Beta1-adrenoceptor or alpha1-adrenoceptor activation initiates early odor preference learning in rat pups: support for the mitral cell/cAMP model of odor preference learning. Learn Mem 2006; 13:8-13. [PMID: 16452650 DOI: 10.1101/lm.62006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We proposed that mitral cell beta1-adrenoceptor activation mediates rat pup odor preference learning. Here we evaluate beta1-, beta2-, alpha1-, and alpha2-adrenoceptor agonists in such learning. The beta1-adrenoceptor agonist, dobutamine, and the alpha1-adrenoceptor agonist, phenylephrine, induced learning, and both exhibited an inverted U-curve dose-response relationship to odor preference learning. Phenylephrine-induced learning occurred in the presence of propranolol to prevent indirect activation of beta-adrenoceptors. Alpha1-adrenoceptor mediation may represent a novel mechanism inducing learning or may increase cAMP in mitral cells via indirect activation of GABA(B) receptors. Neither the beta2-adrenoceptor agonist, salbutamol, nor the alpha2-adrenoceptor agonist, clonidine, induced learning.
Collapse
Affiliation(s)
- Carolyn W Harley
- Department of Psychology, Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | | | | | | |
Collapse
|
16
|
Abstract
Behavior genetics studies in mice demand efficient training protocols for rapid phenotypic screening. However, the capacity of neonatal mice to form and retain associative memories has been difficult to study due to their limited sensorimotor capacities. The present study describes a method for robust, naturalistic associative learning in neonatal mice as young as 3 days old. After removal of the dam from the home cage for 2 h, preweanling CD-1 mice of ages 3, 5, and 10 days postnatal were conditioned to associate an arbitrary odorant with the suckling and milk delivery that ensued upon her return to the home cage. After a second maternal deprivation, neonates were tested on their acquired preference for that odorant. Neonates exhibited a learned preference for the conditioned odorant over a novel control odorant. No learning was observed without deprivation, that is, when the dam was removed only briefly for scenting. One-trial learning sufficed to show clear preferences for the conditioned odorant, although repeated training (three sessions over 8 days) significantly increased the expression of preference. The development of neonatal associative learning protocols requiring minimal human intervention is important for the behavioral phenotyping of mutant and transgenic strains, particularly those modeling developmental disorders.
Collapse
Affiliation(s)
- Caren M Armstrong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|