1
|
Sun W, Li X, Tang D, Wu Y, An L. Subacute melamine exposure disrupts task-based hippocampal information flow via inhibiting the subunits 2 and 3 of AMPA glutamate receptors expression. Hum Exp Toxicol 2020; 40:928-939. [PMID: 33243008 DOI: 10.1177/0960327120975821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although melamine exposure induces cognitive deficits and dysfunctional neurotransmission in hippocampal Cornus Ammonis (CA) 1 region of rats, it is unclear whether the neural function, such as neural oscillations between hippocampal CA3-CA1 pathway and postsynaptic receptors involves in these effects. The levels of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit glutamate receptor (GluR) 1 and GluR2/3 in CA1 region of melamine-treated rats, which were intragastric treated with 300 mg/kg/day for 4 weeks, were detected. Following systemic or intra-hippocampal CA1 injection with GluR2/3 agonist, spatial learning of melamine-treated rats was assessed in Morris water maze (MWM) task. Local field potentials were recorded in CA3-CA1 pathway before and during behavioral test. General Partial Directed Coherence approach was applied to determine directionality of neural information flow between CA3 and CA1 regions. Results showed that melamine exposure reduced GluR2/3 but not GluR1 level and systemic or intra-hippocampal CA1 injection with GluR2/3 agonist effectively mitigated the learning deficits. Phase synchronization between CA3 and CA1 regions were significantly diminished in delta, theta and alpha oscillations. Coupling directional index and strength of CA3 driving CA1 were marked reduced as well. Intra-hippocampal CA1 infusion with GluR2/3 agonist significantly enhanced the phase locked value and reversed the melamine-induced reduction in the neural information flow (NIF) from CA3 to CA1 region. These findings support that melamine exposure decrease the expression of GluR2/3 subunit involved in weakening directionality index of NIF, and thereby induced spatial learning deficits.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Jinan Hospital, Jinan, China.,Department of Neurology, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory. J Neurosci 2017; 36:4930-9. [PMID: 27147648 PMCID: PMC4854963 DOI: 10.1523/jneurosci.2933-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/04/2016] [Indexed: 01/22/2023] Open
Abstract
Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement.
Collapse
|
3
|
Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats. J Neurosci 2013; 33:12218-28. [PMID: 23884930 DOI: 10.1523/jneurosci.4827-12.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely "turns on" the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation.
Collapse
|
4
|
Ninan I. Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology 2013; 76 Pt C:684-95. [PMID: 23747574 DOI: 10.1016/j.neuropharm.2013.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022]
Abstract
Brain derived neurotrophic factor (BDNF), a neurotrophin essential for nervous system development and synaptic plasticity, has been found to have a significant influence on affective behaviors. The notion that an impairment in BDNF signaling might be involved in affective disorders is originated primarily from the opposing effects of antidepressants and stress on BDNF signaling. Antidepressants enhance BDNF signaling and synaptic plasticity. On the other hand, negative environmental factors such as severe stress suppress BDNF signaling, impair synaptic activity and increase susceptibility to affective disorders. Postmortem studies provided strong support for decreased BDNF signaling in depressive disorders. Remarkably, studies in humans with a single nucleotide polymorphism in the BDNF gene, the BDNF Val66Met which affects regulated release of BDNF, showed profound deficits in hippocampal and prefrontal cortical (PFC) plasticity and cognitive behaviors. BDNF regulates synaptic mechanisms responsible for various cognitive processes including attenuation of aversive memories, a key process in the regulation of affective behaviors. The unique role of BDNF in cognitive and affective behaviors suggests that cognitive deficits due to altered BDNF signaling might underlie affective disorders. Understanding how BDNF modulates synapses in neural circuits relevant to affective behaviors, particularly the medial prefrontal cortical (mPFC)-hippocampus-amygdala pathway, and its interaction with development, sex, and environmental risk factors might shed light on potential therapeutic targets for affective disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Ipe Ninan
- Department of Psychiatry, NYU School of Medicine, SKI 5-3, 540 1st Ave, NY 10016, United States.
| |
Collapse
|
5
|
Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy. Neuropharmacology 2012; 64:45-52. [PMID: 22735771 DOI: 10.1016/j.neuropharm.2012.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 01/03/2023]
Abstract
Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors facilitate synaptic plasticity and can improve various forms of learning and memory. These modulators show promise as therapeutic agents for the treatment of neurological disorders such as schizophrenia, ADHD, and mental depression. Three classes of positive modulator, the benzamides, the thiadiazides, and the biarylsulfonamides differentially occupy a solvent accessible binding pocket at the interface between the two subunits that form the AMPA receptor ligand-binding pocket. Here, we describe the electrophysiological properties of a new chemotype derived from a structure-based drug design strategy (SBDD), which makes similar receptor interactions compared to previously reported classes of modulator. This pyrazole amide derivative, JAMI1001A, with a promising developability profile, efficaciously modulates AMPA receptor deactivation and desensitization of both flip and flop receptor isoforms. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
|
6
|
Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012; 100:775-800. [DOI: 10.1016/j.pbb.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|
7
|
Montgomery KE, Kessler M, Arai AC. Modulation of agonist binding to AMPA receptors by 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546): differential effects across brain regions and GluA1-4/transmembrane AMPA receptor regulatory protein combinations. J Pharmacol Exp Ther 2009; 331:965-74. [PMID: 19717789 PMCID: PMC2784708 DOI: 10.1124/jpet.109.158014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/27/2009] [Indexed: 01/07/2023] Open
Abstract
Ampakines are cognitive enhancers that potentiate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor currents and synaptic responses by slowing receptor deactivation. Their efficacy varies greatly between classes of neurons and brain regions, but the factor responsible for this effect remains unclear. Ampakines also increase agonist affinity in binding tests in ways that are related to their physiological action. We therefore examined 1) whether ampakine effects on agonist binding vary across brain regions and 2) whether they differ across receptor subunits expressed alone and together with transmembrane AMPA receptor regulatory proteins (TARPs), which associate with AMPA receptors in the brain. We found that the maximal increase in agonist binding (E(max)) caused by the prototypical ampakine 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546) differs significantly between brain regions, with effects in hippocampus and cerebellum being nearly three times larger than that in thalamus, brainstem, and striatum, and cortex being intermediate. These differences can be explained at least in part by regional variations in receptor subunit and TARP expression because combinations prevalent in hippocampus (GluA2 with TARPs gamma3 and gamma8) exhibited E(max) values nearly twice those of combinations abundant in thalamus (GluA4 with gamma2 or gamma4). TARPs seem to be critical because GluA2 and GluA4 alone had comparable E(max) and also because hippocampal and thalamic receptors had similar E(max) after solubilization with Triton X-100, which probably removes associated proteins. Taken together, our data suggest that variations in physiological drug efficacy, such as the 3-fold difference previously seen in recordings from hippocampus versus thalamus, may be explained by region-specific expression of GluA1-4 as well as TARPs.
Collapse
Affiliation(s)
- Kyle E Montgomery
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA.
| | | | | |
Collapse
|
8
|
Costa L, Santangelo F, Li Volsi G, Ciranna L. Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Hippocampus 2009; 19:99-109. [PMID: 18727050 DOI: 10.1002/hipo.20488] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neurotrophic and neuromodulatory peptide, was recently shown to enhance NMDA receptor-mediated currents in the hippocampus (Macdonald, et al. 2005. J Neurosci 25:11374-11384). To check if PACAP might also modulate AMPA receptor function, we tested its effects on AMPA receptor-mediated synaptic currents on CA1 pyramidal neurons, using the patch clamp technique on hippocampal slices. In the presence of the NMDA antagonist D-AP5, PACAP (10 nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of Schaffer collaterals. Following a paired-pulse stimulation protocol, the paired-pulse ratio was unaffected in most neurons, suggesting that the AMPA-mediated EPSC was modulated by PACAP mainly at a postsynaptic level. PACAP also modulated the currents induced on CA1 pyramidal neurons by applications of either glutamate or AMPA. The effects of PACAP were dose-dependent: at a 0.5 nM dose, PACAP increased AMPA-mediated current; such effect was blocked by PACAP 6-38, a selective antagonist of PAC1 receptors. The enhancement of AMPA-mediated current by PACAP 0.5 nM was abolished when cAMPS-Rp, a PKA inhibitor, was added to the intracellular solution. At a 10 nM concentration, PACAP reduced AMPA-mediated current; such effect was not blocked by PACAP 6-38. The inhibitory effect of 10 nM PACAP was mimicked by Bay 55-9837 (a selective agonist of VPAC2 receptors), persisted in the presence of intracellular BAPTA and was abolished by intracellular cAMPS-Rp. Stimulation-evoked EPSCs in CA1 neurons were significantly reduced following application of the PAC1 antagonist PACAP 6-38; this result indicates that PAC1 receptors in the CA1 region are tonically activated by endogenous PACAP and enhance CA3-CA1 synaptic transmission. Our results show that PACAP differentially modulates AMPA receptor-mediated current in CA1 pyramidal neurons by activation of PAC1 and VPAC2 receptors, both involving the cAMP/PKA pathway; the functional significance will be discussed in light of the multiple effects exerted by PACAP on the CA3-CA1 synapse at different levels.
Collapse
Affiliation(s)
- L Costa
- Dipartimento di Scienze Fisiologiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | |
Collapse
|
9
|
Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J, Manschreck T, Freudenreich O, Johnson SA. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2008; 33:465-72. [PMID: 17487227 PMCID: PMC3098468 DOI: 10.1038/sj.npp.1301444] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AMPA-receptor-positive modulators (Ampakines) facilitate learning and memory in animal models and in preliminary trials in human subjects. CX516 is the first Ampakine to be studied for cognitive enhancement in schizophrenia. Stable schizophrenia patients treated with clozapine (n=52), olanzapine (n=40), or risperidone (n=13) were randomly assigned to add-on treatment with CX516 900 mg three times daily or placebo for 4 weeks. Subjects were assessed with a cognitive battery at baseline, week 4, and at 4-week follow-up. Clinical scales and safety monitoring were also performed. The primary endpoint was the change from baseline in a composite cognitive score at week 4 for the intent-to-treat sample. Additional analyses examined change in symptom rating scores and examined drug effects on patients treated with clozapine separately from patients treated with either olanzapine or risperidone. A total of 105 patients were randomized and 95 (90%) completed the 4-week trial. Patients treated with CX516 did not differ from placebo in change from baseline on the composite cognitive score, or on any cognitive test at weeks 4 or 8. The between groups effect size at week 4 for the cognitive composite score was -0.19 for clozapine-treated patients and 0.24 for patients treated with olanzapine or risperidone. The placebo group improved more on the PANSS total score than the CX516 group; no other clinical rating differed between treatment groups. CX516 was associated with fatigue, insomnia and epigastric discomfort compared to placebo, but was generally well tolerated. CX516 was not effective for cognition or for symptoms of schizophrenia when added to clozapine, olanzapine, or risperidone.
Collapse
Affiliation(s)
- Donald C Goff
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Goldin M, Epsztein J, Jorquera I, Represa A, Ben-Ari Y, Crépel V, Cossart R. Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency. J Neurosci 2007; 27:9560-72. [PMID: 17804617 PMCID: PMC6672977 DOI: 10.1523/jneurosci.1237-07.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic interneurons of the hippocampus play an important role in the generation of behaviorally relevant network oscillations. Among this heterogeneous neuronal population, somatostatin (SOM)-positive oriens-lacunosum moleculare (O-LM) interneurons are remarkable because they are tuned to operate at theta frequencies (6-10 Hz) in vitro and in vivo. Recent studies show that a high proportion of glutamatergic synapses that impinge on O-LM interneurons are mediated by kainate receptors (KA-Rs). In the present study, we thus tested the hypothesis that KA-Rs transmit afferent inputs in O-LM neurons during synaptic stimulation at theta frequency. We combined multibeam two-photon calcium imaging in hippocampal slices from SOM-enhanced green fluorescent protein (EGFP) mice, to record the activity of SOM cells as well as hundreds of neurons simultaneously, and targeted electrophysiological recordings and morphological analysis to describe the morphofunctional features of particular cells. We report that EGFP-positive O-LM neurons are the only subtype of interneuron that reliably follows synaptic stimulation of the alveus in the theta frequency range. Electrophysiological recordings revealed the crucial contribution of KA-Rs to the firing activity and to the glutamatergic response to theta stimuli in O-LM cells compared with other cell types. The reliable activation of O-LM cells in the theta frequency range did not simply result from the longer kinetics of KA-R-mediated postsynaptic events (EPSP(KA)) but presumably from a specific interaction between EPSP(KA) and their intrinsic active membrane properties. Such preferential processing of excitatory inputs via KA-Rs by distally projecting GABAergic microcircuits could provide a key role in theta band frequency oscillations.
Collapse
Affiliation(s)
- Miri Goldin
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| | - Jérôme Epsztein
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| | - Isabel Jorquera
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| | - Alfonso Represa
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| | - Yehezkel Ben-Ari
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| | - Valérie Crépel
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| | - Rosa Cossart
- Institut de Neurobiologie de la Méditeranée, Inserm, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille cedex 9, France
| |
Collapse
|