1
|
Tadokoro S, Miki S, Yamanaka T, Hirata Y. Horizontal, vertical, and torsional optokinetic responses and their adaptations in fish. J Neurophysiol 2025; 133:965-986. [PMID: 39951648 DOI: 10.1152/jn.00565.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/16/2025] Open
Abstract
Eye movements in vertebrates moving around stabilize retinal images, achieved through the vestibuloocular reflex (VOR) and the optokinetic response (OKR). Although VOR compensates for head velocity, its effectiveness declines with prolonged motion, necessitating the OKR. This study explores the three-dimensional (3-D) nature of the OKR in goldfish, focusing on horizontal (H), vertical (V), and torsional (T) responses and their adaptation. We found that naïve goldfish exhibited minimal V and TOKR unlike robust HOKR having low-pass characteristics. Through visual training, V and TOKR manifested with flatter frequency spectra, although TOKR toward intorsion unchanged. Memory retention revealed a slower decay of adapted TOKR compared with others. These are the first evaluation of V and TOKR in fish, demonstrating that while naïve goldfish do not rely on V and TOKR in their natural behavior, they retain adaptative capabilities. Vertical and torsional ocular ranges, measured through tilt VOR, well exceeded OKR movement ranges, indicating that minimal VOKR and TOKR are not due to ocular muscle limitations but inherent OKR properties. Head motion analysis in freely swimming goldfish and carp, a closely related species, revealed small, flat frequency spectra in roll and pitch, and large low-pass spectra in yaw in the former, and a significant pitch-down bias during foraging in the latter. These findings suggest that goldfish OKRs are adaptable across axes, reflecting the unique vestibular and visual experiences associated with goldfish locomotor behavior patterns. Notably, the asymmetrical adaptability of TOKR potentially linked to foraging behaviors.NEW & NOTEWORTHY This study provides the first comprehensive evaluation of vertical (V) and torsional (T) optokinetic responses (OKR) in fish, demonstrating that naïve animals exhibit minimal V and TOKR compared with robust horizontal (H) OKR. Visual training revealed adaptive capabilities, with V and TOKR gains increasing, although TOKR showed directional asymmetry. Notably, adapted TOKR exhibited slower memory decay than H and VOKR. These findings highlight the plasticity of OKR and its functional relevance to locomotor behaviors.
Collapse
Affiliation(s)
- Shin Tadokoro
- Department of Robotic Science and Technology, Chubu University Graduate School of Engineering, Kasugai, Japan
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Tokorozawa, Japan
- Japan Air Self-Defense Force, Ichigaya, Japan
| | - Shuntaro Miki
- Department of Artificial Intelligence and Robotics, Chubu University College of Science and Engineering, Kasugai, Japan
| | - Toshimi Yamanaka
- Department of Robotic Science and Technology, Chubu University Graduate School of Engineering, Kasugai, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Chubu University Graduate School of Engineering, Kasugai, Japan
- Department of Artificial Intelligence and Robotics, Chubu University College of Science and Engineering, Kasugai, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Japan
- Chubu University Academy of Emerging Sciences, Kasugai, Japan
| |
Collapse
|
2
|
Wang N, Perkins E, Zhou L, Warren S, May PJ. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal. Front Neuroanat 2017; 11:36. [PMID: 28487639 PMCID: PMC5403835 DOI: 10.3389/fnana.2017.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 11/26/2022] Open
Abstract
The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.
Collapse
Affiliation(s)
- Niping Wang
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Periodontics and Preventive Sciences, University of Mississippi Medical CenterJackson, MS, USA
| | - Eddie Perkins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Neurosurgery, University of Mississippi Medical CenterJackson, MS, USA
| | - Lan Zhou
- Department of Internal Medicine, G.V. Montgomery Veterans Administration Medical CenterJackson, MS, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Neurology, University of Mississippi Medical CenterJackson, MS, USA.,Department of Ophthalmology, University of Mississippi Medical CenterJackson, MS, USA
| |
Collapse
|
3
|
Ota KG, Abe G. Goldfish morphology as a model for evolutionary developmental biology. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:272-95. [PMID: 26952007 PMCID: PMC6680352 DOI: 10.1002/wdev.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
4
|
Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 2012; 223:183-99. [PMID: 22864184 DOI: 10.1016/j.neuroscience.2012.07.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only (VO) cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were VO cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns.
Collapse
|
5
|
Bianco IH, Kampff AR, Engert F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 2011; 5:101. [PMID: 22203793 PMCID: PMC3240898 DOI: 10.3389/fnsys.2011.00101] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/29/2011] [Indexed: 11/13/2022] Open
Abstract
Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey.
Collapse
Affiliation(s)
- Isaac H Bianco
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University Cambridge, MA, USA
| | | | | |
Collapse
|
6
|
Robles E, Smith SJ, Baier H. Characterization of genetically targeted neuron types in the zebrafish optic tectum. Front Neural Circuits 2011; 5:1. [PMID: 21390291 PMCID: PMC3046383 DOI: 10.3389/fncir.2011.00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/02/2011] [Indexed: 01/20/2023] Open
Abstract
The optically transparent larval zebrafish is ideally suited for in vivo analyses of neural circuitry controlling visually guided behaviors. However, there is a lack of information regarding specific cell types in the major retinorecipient brain region of the fish, the optic tectum. Here we report the characterization of three previously unidentified tectal cell types that are specifically labeled by dlx5/6 enhancer elements. In vivo laser-scanning microscopy in conjunction with ex vivo array tomography revealed that these neurons differ in their morphologies, synaptic connectivity, and neurotransmitter phenotypes. The first type is an excitatory bistratified periventricular interneuron that forms a dendritic arbor in the retinorecipient stratum fibrosum et griseum superficiale (SFGS) and an axonal arbor in the stratum griseum centrale (SGC). The second type, a GABAergic non-stratified periventricular interneuron, extends a bushy arbor containing both dendrites and axons into the SGC and the deepest sublayers of the SFGS. The third type is a GABAergic periventricular projection neuron that extends a dendritic arbor into the SGC and a long axon to the torus semicircularis, medulla oblongata, and anterior hindbrain. Interestingly, the same axons form en passant synapses within the deepest neuropil layer of the tectum, the stratum album centrale. This approach revealed several novel aspects of tectal circuitry, including: (1) a glutamatergic mode of transmission from the superficial, retinorecipient neuropil layers to the deeper, output layers, (2) the presence of interneurons with mixed dendrite/axon arbors likely involved in local processing, and (3) a heretofore unknown GABAergic tectofugal projection to midbrain and hindbrain. These observations establish a framework for studying the morphological and functional differentiation of neural circuits in the zebrafish visual system.
Collapse
Affiliation(s)
- Estuardo Robles
- Department of Physiology, University of California San Francisco San Francisco, CA, USA
| | | | | |
Collapse
|
7
|
Luque MA, Torres-Torrelo J, Carrascal L, Torres B, Herrero L. GABAergic Projections to the Oculomotor Nucleus in the Goldfish (carassius Auratus). Front Neuroanat 2011; 5:7. [PMID: 21331170 PMCID: PMC3034998 DOI: 10.3389/fnana.2011.00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/23/2011] [Indexed: 11/29/2022] Open
Abstract
The mammalian oculomotor nucleus receives a strong γ-aminobutyric acid (GABA)ergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe), were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.
Collapse
Affiliation(s)
- M. Angeles Luque
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | | | - Livia Carrascal
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | - Blas Torres
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | - Luis Herrero
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| |
Collapse
|
8
|
Yoshida M, Hirano R. Effects of local anesthesia of the cerebellum on classical fear conditioning in goldfish. Behav Brain Funct 2010; 6:20. [PMID: 20331854 PMCID: PMC2848191 DOI: 10.1186/1744-9081-6-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Besides the amygdala, of which emotion roles have been intensively studied, the cerebellum has also been demonstrated to play a critical role in simple classical fear conditioning in both mammals and fishes. In the present study, we examined the effect of local administration of the anesthetic agent lidocaine into the cerebellum on fear-related, classical heart-rate conditioning in goldfish. METHODS The effects of microinjection of the anesthetic agent lidocaine into the cerebellum on fear conditioning were investigated in goldfish. The fear conditioning paradigm was delayed classical conditioning with light as a conditioned stimulus and electric shock as an unconditioned stimulus; cardiac deceleration (bradycardia) was the conditioned response. RESULTS Injecting lidocaine into the cerebellum had no effect on the base heart rate, an arousal/orienting response to the novel stimulus (i.e., the first presentation of light), or an unconditioned response to electric shock. However, lidocaine injection greatly impaired acquisition of conditioned bradycardia. Lidocaine injection 60 min before the start of the conditioning procedure showed no effect on acquisition of conditioned bradycardia, indicating that the effect of lidocaine was reversible. CONCLUSIONS The present results further confirm the idea that the cerebellum in teleost fish, as in mammals, is critically involved in classical fear conditioning.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima 739-8528, Japan.
| | | |
Collapse
|
9
|
Sankrithi NS, O'Malley DM. Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors. Neuroscience 2010; 166:970-93. [PMID: 20074619 DOI: 10.1016/j.neuroscience.2010.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/25/2022]
Abstract
Action potentials from the brain control the activity of spinal neural networks to produce, by as yet unknown mechanisms, a variety of motor behaviors. Particularly lacking are details on how identified descending neurons integrate diverse sensory inputs to generate specific locomotor patterns. We have examined the operations of the principal neurons in an intriguing midbrain nucleus, the nucleus of the medial longitudinal fasciculus (nMLF), in the larval zebrafish. The nMLF is the most rostral grouping of neurons that projects from the brain well into the spinal cord of teleost fishes, yet there is little direct physiological data available regarding its function. We report here that a distinct set of large, individually-identifiable neurons in nMLF (the MeL and MeM neurons) are activated by diverse sensory stimuli and contribute to distinct locomotor behaviors. Using in vivo confocal calcium imaging we observed that both photic and mechanical stimuli elicit calcium responses indicative of the firing of action potentials. Calcium responses were observed simultaneously with distinct swimming, turning and struggling movements of the larval trunk. While selectively contralateral responses were at times observed in response to a head-tap stimulus, these nMLF cells showed roughly similar numbers of bilateral responses. Calcium responses were observed at a range of latencies, suggesting involvement with both slow swimming patterns and the burst swimming component of the escape behavior. The MeL cells in particular were strongly activated during light-evoked slow swimming. The activation of MeL cells during the slow and burst forward swim gaits is consistent with their driving and/or coordinating the activity of slow and fast central pattern generators in spinal cord. As such, the MeL cells may help to shape a variety of larval behaviors including the optomotor response, escape swimming and prey capture.
Collapse
Affiliation(s)
- N S Sankrithi
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Waitzman DM, Van Horn MR, Cullen KE. Neuronal evidence for individual eye control in the primate cMRF. PROGRESS IN BRAIN RESEARCH 2009; 171:143-50. [PMID: 18718293 DOI: 10.1016/s0079-6123(08)00619-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Previous single unit recordings and electrical stimulation have suggested that separate regions of the MRF participate in the control of vergence and conjugate eye movements. Neurons in the supraoculomotor area (SOA) have been found to encode symmetric vergence [Zhang, Y. et al. (1992). J. Neurophysiol., 67: 944-960] while neurons in the central MRF, the cMRF, located ventral to the SOA and lateral to the oculomotor nucleus are associated with conjugate eye movements [Waitzman, D.M. et al. (1996). J. Neurophysiol., 75(4): 1546-1572]. However, it remains unknown if cMRF neurons are strictly associated with conjugate movements since eye movements were recorded with a single eye coil in monkeys viewing visual stimuli at a distance of at least 50 cm. In the current study we addressed whether neurons in the cMRF might also encode vergence-related information. Interestingly, electrical stimulation elicited disconjugate saccades (contralateral eye moved more than the ipsilateral eye) from locations previously thought to elicit only conjugate saccades. Single unit recordings in this same area made in two rhesus monkeys trained to follow visual stimuli moved rapidly in depth along the axis of sight of an individual eye demonstrate that cMRF neurons do not simply encode conjugate information during disconjugate saccades; in fact our findings provide evidence that cMRF neurons are most closely associated with the movement of an individual eye. These results support the hypothesis that the midbrain shapes the activity of the pre-motor saccadic neurons by encoding integrated conjugate and vergence commands.
Collapse
Affiliation(s)
- David M Waitzman
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, USA.
| | | | | |
Collapse
|
11
|
Van Horn MR, Cullen KE. Dynamic Coding of Vertical Facilitated Vergence by Premotor Saccadic Burst Neurons. J Neurophysiol 2008; 100:1967-82. [PMID: 18632878 DOI: 10.1152/jn.90580.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed “conjugate” saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100°/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.
Collapse
|
12
|
Van Horn MR, Sylvestre PA, Cullen KE. The brain stem saccadic burst generator encodes gaze in three-dimensional space. J Neurophysiol 2008; 99:2602-16. [PMID: 18337361 DOI: 10.1152/jn.01379.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in "vergence centers." We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.
Collapse
Affiliation(s)
- Marion R Van Horn
- Aerospace Medical Research Unit, Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, PQ, Canada
| | | | | |
Collapse
|
13
|
Warren S, Waitzman DM, May PJ. Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in the cat and macaque. Anat Rec (Hoboken) 2008; 291:141-60. [PMID: 18213702 PMCID: PMC2859179 DOI: 10.1002/ar.20644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A gaze-related region in the caudal midbrain tegementum, termed the central mesencephalic reticular formation (cMRF), has been designated on electrophysiological grounds in monkeys. In macaques, the cMRF correlates with an area in which reticulotectal neurons overlap with tectoreticular terminals. We examined whether a region with the same anatomical characteristics exists in cats by injecting biotinylated dextran amine into their superior colliculi. These injections showed that a cat cMRF is present. Not only do labeled tectoreticular axons overlap the distribution of labeled reticulotectal neurons, these elements also show numerous close boutonal associations, suggestive of synaptic contact. Thus, the presence of a cMRF that supplies gaze-related feedback to the superior colliculus may be a common vertebrate feature. We then investigated whether cMRF connections indicate a role in the head movement component of gaze changes. Cervical spinal cord injections in both the cat and monkey retrogradely labeled neurons in the ipsilateral, medial cMRF. In addition, they provided evidence for a spinoreticular projection that terminates in this same portion of the cMRF, and in some cases contributes boutons that are closely associated with reticulospinal neurons. Injection of the physiologically defined, macaque cMRF demonstrated that this spinoreticular projection originates in the cervical ventral horn, indicating it may provide the cMRF with an efference copy signal. Thus, the cat and monkey cMRFs have a subregion that is reciprocally connected with the ipsilateral spinal cord. This pattern suggests the medial cMRF may play a role in modulating the activity of antagonist neck muscles during horizontal gaze changes.
Collapse
Affiliation(s)
- Susan Warren
- Department of Anatomy, University of Mississippi Medical Center, Jackson, MS, 39216, U.S.A
| | - David M. Waitzman
- Department of Neurology, University of Connecticut Health Sciences Center, Farmington, CT, 06032, U.S.A
| | - Paul J. May
- Departments of Anatomy, Neurology and Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, U.S.A
| |
Collapse
|
14
|
Luque MA, Pérez-Pérez MP, Herrero L, Torres B. Afferent and efferent connections of the mesencephalic reticular formation in goldfish. Brain Res Bull 2007; 75:480-4. [PMID: 18331918 DOI: 10.1016/j.brainresbull.2007.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
The physiology of the mesencephalic reticular formation (MRF) in goldfish suggests its contribution to eye and body movements, but the afferent and efferent connections underlying such movements have not been determined. Therefore, we injected the bidirectional tracer biotinylated dextran amine into functionally identified MRF sites. We found retrogradely labelled neurons and anterogradely labelled boutons within nuclei of the following brain regions: (1) the telencephalon: a weak and reciprocal connectivity was confined to the central zone of area dorsalis and ventral nucleus of area ventralis; (2) the diencephalon: reciprocal connections were abundant in the ventral and dorsal thalamic nuclei; the central pretectal nucleus was also reciprocally wired with the MRF, but only boutons were present in the superficial pretectal nucleus; the preoptic and suprachiasmatic nuclei showed abundant neurons and boutons; the MRF was reciprocally connected with the preglomerular complex and the anterior tuberal nucleus; (3) the mesencephalon: neurons and boutons were abundant within deep tectal layers; reciprocal connections were also present within the torus semicircularis and the contralateral MRF; neurons were abundant within the nucleus isthmi; and (4) the rhombencephalon: the superior and middle parts of the reticular formation received strong projections from the MRF, while the projection to the inferior area was weaker; sparse neurons were present throughout the reticular formation; a reciprocal connectivity was observed with the sensory trigeminal nucleus; the medial and magnocellular nuclei of the octaval column projected to the MRF. These results support the participation of the MRF in the orienting response. The MRF could also be involved in other motor tasks triggered by visual, auditory, vestibular, or somatosensory signals.
Collapse
Affiliation(s)
- M A Luque
- Lab. Neurobiologia de Vertebrados, Dept. Fisiologia y Biologia Animal, Fac. Biologia, University Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
15
|
Luque MA, Perez-Perez MP, Herrero L, Torres B. Connections of eye-saccade-related areas within mesencephalic reticular formation with the optic tectum in goldfish. J Comp Neurol 2006; 500:6-19. [PMID: 17099899 DOI: 10.1002/cne.21104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physiological studies demonstrate that separate sites within the mesencephalic reticular formation (MRF) can evoke eye saccades with different preferred directions. Furthermore, anatomical research suggests that a tectoreticulotectal circuit organized in accordance with the tectal eye movement map is present. However, whether the reticulotectal projection shifts with the gaze map present in the MRF is unknown. We explored this question in goldfish, by injecting biotin dextran amine within MRF sites that evoked upward, downward, oblique, and horizontal eye saccades. Then, we analyzed the labeling in the optic tectum. The main findings can be summarized as follows. 1) The MRF and the optic tectum were connected by separate axons of the tectobulbar tract. 2) The MRF was reciprocally connected mainly with the ipsilateral tectal lobe, but also with the contralateral one. 3) The MRF received projections chiefly from neurons located within intermediate and deep tectal layers. In addition, the MRF projections terminated primarily within the intermediate tectal layer. 4) The distribution of labeled neurons in the tectum shifted with the different MRF sites in a manner consistent with the tectal motor map. The area containing these cells was targeted by a high-density reticulotectal projection. In addition to this high-density topographic projection, there was a low-density one spread throughout the tectum. 5) Occasionally, boutons were observed adjacent to tectal labeled neurons. We conclude that the organization of the reticulotectal circuit is consistent with the functional topography of the MRF and that the MRF participates in a tectoreticulotectal feedback circuit.
Collapse
Affiliation(s)
- Maria A Luque
- Lab. Neurobiologia de Vertebrados, Dept. Fisiologia y Zoologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|