1
|
Almaguer-Melian W, Mercerón-Martínez D, Bergado-Rosado J. A unique erythropoietin dosage induces the recovery of long-term synaptic potentiation in fimbria-fornix lesioned rats. Brain Res 2023; 1799:148178. [PMID: 36442648 DOI: 10.1016/j.brainres.2022.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Synapses can experience long-term enhancements in its efficacy transmission in an activity-dependent manner (LTP, Long-Term Potentiation). This could contribute to store the living experiences in memory. Consequently, loss of synaptic plasticity can lead to failures in memory encoding and storage. Hence, finding ways to restore synaptic function can help restore learning and memory ability. Erythropoietin (EPO) has shown beneficial effects in the brain as a neuroprotector, improving affected learning, memory, and synaptic plasticity among other. In the present study, using the fimbria-fornix lesion model, we address the question whether the administration of erythropoietin restores the synaptic capacity to produce long-lasting increases in their transmission efficiency. A series of experiments was designed in which a control group of healthy young animals and one of injured young animals were formed. A subgroup of injured animals was injected with EPO or the vehicle in which the EPO is diluted (Veh). EPO or Veh was administered 15 min before LTP induction. Our data show that EPO produces a recovery in LTP in the group of fimbria-fornix lesioned animals, which show a severe impairment in the maintenance of LTP. Furthermore, LTP in the injured animals that received EPO was similar to that of the healthy control animals. LTP is widely accepted as a cellular mechanism of memory. Restoring LTP by EPO might be a potential tool for the treatment of memory disturbing diseases like Alzheimeŕs disease. Ongoing clinical trials are evaluating a potential therapeutic effect of low sialic acid-EPO (NeuroEPO) on degenerative diseases.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba
| | - Jorge Bergado-Rosado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba 4536534, Colombia.
| |
Collapse
|
2
|
Giordano KR, Law LM, Henderson J, Rowe RK, Lifshitz J. Time Course of Remote Neuropathology Following Diffuse Traumatic Brain Injury in the Male Rat. Exp Neurobiol 2022; 31:105-115. [PMID: 35673999 PMCID: PMC9194637 DOI: 10.5607/en21027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) can affect different regions throughout the brain. Regions near the site of impact are the most vulnerable to injury. However, damage to distal regions occurs. We investigated progressive neuropathology in the dorsal hippocampus (near the impact) and cerebellum (distal to the impact) after diffuse TBI. Adult male rats were subjected to midline fluid percussion injury or sham injury. Brain tissue was stained by the amino cupric silver stain. Neuropathology was quantified in sub-regions of the dorsal hippocampus at 1, 7, and 28 days post-injury (DPI) and coronal cerebellar sections at 1, 2, and 7 DPI. The highest observed neuropathology in the dentate gyrus occurred at 7 DPI which attenuated by 28 DPI, whereas the highest observed neuropathology was at 1 DPI in the CA3 region. There was no significant neuropathology in the CA1 region at any time point. Neuropathology was increased at 7 DPI in the cerebellum compared to shams and stripes of pathology were observed in the molecular layer perpendicular to the cerebellar cortical surface. Together these data show that diffuse TBI can result in neuropathology across the brain. By describing the time course of pathology in response to TBI, it is possible to build the temporal profile of disease progression.
Collapse
Affiliation(s)
- Katherine R Giordano
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - L Matthew Law
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Jordan Henderson
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
3
|
Mercerón-Martínez D, Almaguer-Melian W, Bergado JA. Basolateral amygdala stimulation plus water maze training restore dentate gyrus LTP and improve spatial learning and memory. Behav Brain Res 2022; 417:113589. [PMID: 34547342 DOI: 10.1016/j.bbr.2021.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Synaptic plasticity is a key mechanism of neural plasticity involved in learning and memory. A reduced or impaired synaptic plasticity could lead to a deficient learning and memory. On the other hand, besides reducing hipocampal dependent learning and memory, fimbria-fornix lesion affects LTP. However, we have consistently shown that stimulation of the basolateral amygdala (BLA) 15 min after water maze training is able to improve spatial learning and memory in fimbria fornix lesioned rats while also inducing changes in the expression of plasticity-related genes expression in memory associated brain regions like the hippocampus and prefrontal cortex. In this study we test that hypothesis: whether BLA stimulation 15 min after water maze training can improve LTP in the hippocampus of fimbria-fornix lesioned rats. To address this question, we trained fimbria-fornix lesioned rats in water maze for four consecutive days, and the BLA was bilaterally stimulated 15 min after each training session.Our data show that trained fimbria-fornix lesioned rats develop a partially improved LTP in dentated gyrus compared with the non-trained fimbria-fornix lesioned rats. In contrast, dentated gyrus LTP in trained and BLA stimulated fimbria-fornix lesioned rats improved significantly compared to the trained fimbria-fornix lesioned rats, but was not different from that shown by healthy animals. BLA stimulation in non-trained FF lesioned rats did not improve LTP; instead produces a transient synaptic depression. Restoration of the ability to develop LTP by the combination of training and BLA stimulation would be one of the mechanisms involved in ameliorating memory deficits in lesioned animals.
Collapse
Affiliation(s)
| | | | - Jorge A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Montería, Colombia.
| |
Collapse
|
4
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Calderón-Peña R, Bergado JA. Amygdala stimulation ameliorates memory impairments and promotes c-Fos activity in fimbria-fornix-lesioned rats. Synapse 2020; 74:e22179. [PMID: 32621298 DOI: 10.1002/syn.22179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
Abstract
Recently we provided data showing that amygdala stimulation can ameliorate spatial memory impairments in rats with lesion in the fimbria-fornix (FF). The mechanisms for this improvement involve early gene expression and synthesis of BDNF, MAP-2, and GAP43 in the hippocampus and prefrontal cortex. Now we have studied which brain structures are activated by the amygdala using c-Fos as a marker of neural activation. First, we studied neuronal activation after tetanic stimulation to the amygdala in intact rats. We then carried out a second study in FF-lesioned rats in which the amygdala was stimulated 15 min after daily spatial memory training in the water maze. Our results showed that amygdala stimulation produces widespread brain activation, that includes cortical, thalamic, and brain stem structures. Activation was particularly intense in the dentate gyrus and the prefrontal cortex. Training in the water maze increased c-Fos positive nuclei in the dentate gyrus of the hippocampus and in medial prefrontal cortex. Amygdala stimulation to trained FF-lesioned rats induced an increase of neural activity in the dentate gyrus and medial prefrontal cortex relative to the FF-lesioned, but not stimulated group, like the c-Fos activity seen in trained control rats. Based on these and previous results we explain the mechanisms of amygdala reinforcement of neural plasticity and the partial recovery of spatial memory deficits.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - William Almaguer-Melian
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Esteban Alberti-Amador
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | | | - Jorge A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Montería, Colombia
| |
Collapse
|
5
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Bergado JA. Amygdala stimulation promotes recovery of behavioral performance in a spatial memory task and increases GAP-43 and MAP-2 in the hippocampus and prefrontal cortex of male rats. Brain Res Bull 2018; 142:8-17. [PMID: 29933038 DOI: 10.1016/j.brainresbull.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
The relationships between affective and cognitive processes are an important issue of present neuroscience. The amygdala, the hippocampus and the prefrontal cortex appear as main players in these mechanisms. We have shown that post-training electrical stimulation of the basolateral amygdala (BLA) speeds the acquisition of a motor skill, and produces a recovery in behavioral performance related to spatial memory in fimbria-fornix (FF) lesioned animals. BLA electrical stimulation rises bdnf RNA expression, BDNF protein levels, and arc RNA expression in the hippocampus. In the present paper we have measured the levels of one presynaptic protein (GAP-43) and one postsynaptic protein (MAP-2) both involved in synaptogenesis to assess whether structural neuroplastic mechanisms are involved in the memory enhancing effects of BLA stimulation. A single train of BLA stimulation produced in healthy animals an increase in the levels of GAP-43 and MAP-2 that lasted days in the hippocampus and the prefrontal cortex. In FF-lesioned rats, daily post-training stimulation of the BLA ameliorates the memory deficit of the animals and induces an increase in the level of both proteins. These results support the hypothesis that the effects of amygdala stimulation on memory recovery are sustained by an enhanced formation of new synapses.
Collapse
Affiliation(s)
- D Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - W Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - E Alberti-Amador
- Lab. Biología Molecular, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa, Havana City, 11300, Cuba.
| | - J A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba, 4536534, Colombia.
| |
Collapse
|
6
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Rajkumar R, Kumar JR, Dawe GS. Priming locus coeruleus noradrenergic modulation of medial perforant path-dentate gyrus synaptic plasticity. Neurobiol Learn Mem 2016; 138:215-225. [PMID: 27400867 DOI: 10.1016/j.nlm.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
Priming phenomenon, in which an earlier exposure to a stimulus or condition alters synaptic plasticity in response to a subsequent stimulus or condition, known as a challenge, is an example of metaplasticity. In this review, we make the case that the locus coeruleus noradrenergic system-medial perforant path-dentate gyrus pathway is a neural ensemble amenable to studying priming-challenge effects on synaptic plasticity. Accumulating evidence points to a tyrosine hydroxylase-dependent priming effect achieved by pharmacological (nicotine and antipsychotics) or physiological (septal theta driving) manipulations of the locus coeruleus noradrenergic system that can facilitate noradrenaline-induced synaptic plasticity in the dentate gyrus of the hippocampus. The evidence suggests the hypothesis that behavioural experiences inducing tyrosine hydroxylase expression in the locus coeruleus may be sufficient to prime this form of metaplasticity. We propose exploring this phenomenon of priming and challenge physiologically, to determine whether behavioural experiences are sufficient to prime the locus coeruleus, enabling subsequent pharmacological or behavioural challenge conditions that increase locus coeruleus firing to release sufficient noradrenaline to induce long-lasting potentiation in the dentate gyrus. Such an approach may contribute to unravelling mechanisms underlying this form of metaplasticity and its importance in stress-related mnemonic processes.
Collapse
Affiliation(s)
- Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|
8
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Estupiñán B, Fernández I, Bergado J. Amygdala electrical stimulation inducing spatial memory recovery produces an increase of hippocampal bdnf and arc gene expression. Brain Res Bull 2016; 124:254-61. [DOI: 10.1016/j.brainresbull.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
|
9
|
Almaguer-Melian W, Mercerón-Martínez D, Pavón-Fuentes N, Alberti-Amador E, Leon-Martinez R, Ledón N, Delgado Ocaña S, Bergado Rosado JA. Erythropoietin Promotes Neural Plasticity and Spatial Memory Recovery in Fimbria-Fornix-Lesioned Rats. Neurorehabil Neural Repair 2015; 29:979-88. [PMID: 25847024 DOI: 10.1177/1545968315572389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Erythropoietin (EPO) upregulates the mitogen activated protein kinase (MAPK) cascade, a central signaling pathway in cellular plastic mechanisms, and is critical for normal brain development. OBJECTIVE We hypothesized that EPO could modulate the plasticity mechanisms supporting spatial memory recovery in fimbria-fornix-transected animals. METHODS Fimbria-fornix was transected in 3 groups of rats. Seven days later, EPO was injected daily for 4 consecutive days within 10 minutes after training on a water maze task. RESULTS Our results show that EPO injections 10 minutes after training produced a substantial spatial memory recovery in fimbria-fornix-lesioned animals. In contrast, an EPO injection shortly after fimbria-fornix lesion surgery does not promote spatial-memory recovery. Neither does daily EPO injection 5 hours after the water maze performance. EPO, on the other hand, induced the expression of plasticity-related genes like arc and bdnf, but this effect was independent of training or lesion. CONCLUSIONS This finding supports our working hypothesis that EPO can modulate transient neuroplastic mechanisms triggered by training in lesioned animals. Consequently, we propose that EPO administration can be a useful trophic factor to promote neural restoration when given in combination with training.
Collapse
Affiliation(s)
| | | | | | | | | | - Nuris Ledón
- Centro de Inmunología Molecular, La Habana, Cuba
| | | | | |
Collapse
|
10
|
LEÓN R, PAVÓN N, PENTÓN G, ALMAGUER W, MARÍN J, CRUZ A, LORIGADOS L, BLANCO L, ESTUPIÑÁN B, MERCERON D, MACÍAS L, BERGADO J. Experimental Model of Cerebral Hypoperfusion Produced Memory-learning Deficits, and Modifications in Gene Expression. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n1.40976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Bergado JA, Lucas M, Richter-Levin G. Emotional tagging—A simple hypothesis in a complex reality. Prog Neurobiol 2011; 94:64-76. [PMID: 21435370 DOI: 10.1016/j.pneurobio.2011.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge A Bergado
- Centro Internacional de Restauracion Neurologica, La Habana, Cuba
| | | | | |
Collapse
|
12
|
Almaguer-Melian W, Bergado J, Martí LM, Duany-Machado C, Frey J. Basolateral amygdala stimulation does not recruit LTP at depotentiated synapses. Physiol Behav 2010; 101:549-53. [DOI: 10.1016/j.physbeh.2010.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 11/29/2022]
|
13
|
Bergado JA, Almaguer W, Rojas Y, Capdevila V, Frey JU. Spatial and emotional memory in aged rats: a behavioral-statistical analysis. Neuroscience 2010; 172:256-69. [PMID: 21036203 DOI: 10.1016/j.neuroscience.2010.10.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023]
Abstract
Age-related impairment in synaptic plasticity, like long-term potentiation (LTP), has been repeatedly reported. We had shown that late stages of LTP in the rat dentate gyrus can be modulated by emotional factors, but this is impaired by aging. In the present study we have searched for possible impairments in emotional and spatial memory tasks that may correspond to the impaired reinforcement observed at the cellular level. We have trained young and aged animals in a battery of tests: exploration (open field) object recognition, anxiety (plus maze) fear conditioning and spatial memory (Morris' water maze (MWM)). The open field, anxiety, and novelty recognition showed no age differences except a reduced velocity in aged rats. Emotional and contextual memories were preserved, but acquisition was slightly impaired. Age-dependent impairments appeared in spatial memory, evaluated in terms of latency and distance to reach the hidden escape platform in the water maze task, but these were not related with impairments in other tests, in particular there was no relation between spatial and emotional memory impairments. Age-related impairments in different paradigms were caused by different independent factors that did not correlated with each other.
Collapse
Affiliation(s)
- J A Bergado
- Centro Internacional de Restauracion Neurologica (CIREN), 11300 Playa, La Habana, Cuba.
| | | | | | | | | |
Collapse
|
14
|
Englot DJ, Modi B, Mishra AM, DeSalvo M, Hyder F, Blumenfeld H. Cortical deactivation induced by subcortical network dysfunction in limbic seizures. J Neurosci 2009; 29:13006-18. [PMID: 19828814 PMCID: PMC2778759 DOI: 10.1523/jneurosci.3846-09.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022] Open
Abstract
Normal human consciousness may be impaired by two possible routes: direct reduced function in widespread cortical regions or indirect disruption of subcortical activating systems. The route through which temporal lobe limbic seizures impair consciousness is not known. We recently developed an animal model that, like human limbic seizures, exhibits neocortical deactivation including cortical slow waves and reduced cortical cerebral blood flow (CBF). We now find through functional magnetic resonance imaging (fMRI) that electrically stimulated hippocampal seizures in rats cause increased activity in subcortical structures including the septal area and mediodorsal thalamus, along with reduced activity in frontal, cingulate, and retrosplenial cortex. Direct recordings from the hippocampus, septum, and medial thalamus demonstrated fast poly-spike activity associated with increased neuronal firing and CBF, whereas frontal cortex showed slow oscillations with decreased neuronal firing and CBF. Stimulation of septal area, but not hippocampus or medial thalamus, in the absence of a seizure resulted in cortical deactivation with slow oscillations and behavioral arrest, resembling changes seen during limbic seizures. Transecting the fornix, the major route from hippocampus to subcortical structures, abolished the negative cortical and behavioral effects of seizures. Cortical slow oscillations and behavioral arrest could be reconstituted in fornix-lesioned animals by inducing synchronous activity in the hippocampus and septal area, implying involvement of a downstream region converged on by both structures. These findings suggest that limbic seizures may cause neocortical deactivation indirectly, through impaired subcortical function. If confirmed, subcortical networks may represent a target for therapies aimed at preserving consciousness in human temporal lobe seizures.
Collapse
Affiliation(s)
| | | | | | | | - Fahmeed Hyder
- Diagnostic Radiology
- Biomedical Engineering
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hal Blumenfeld
- Departments of Neurology
- Neurobiology, and
- Neurosurgery and
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|