1
|
Blakemore LJ, Trombley PQ. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front Cell Neurosci 2017; 11:297. [PMID: 29033788 PMCID: PMC5627021 DOI: 10.3389/fncel.2017.00297] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is highly concentrated in the synaptic vesicles of subsets of glutamatergic neurons in some brain regions including the hippocampus and OB. In addition, zinc is contained in the synaptic vesicles of some glycinergic and GABAergic neurons. Thus, zinc released from synaptic vesicles is available to modulate synaptic transmission mediated by excitatory (e.g., N-methyl-D aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) and inhibitory (e.g., gamma-aminobutyric acid (GABA), glycine) amino acid receptors. Furthermore, extracellular zinc can alter the excitability of neurons through effects on a variety of voltage-gated ion channels. Consistent with the notion that zinc acts as a regulator of neuronal activity, we and others have shown zinc modulation (inhibition and/or potentiation) of amino acid receptors and voltage-gated ion channels expressed by OB neurons. This review summarizes the locations and release of vesicular zinc in the central nervous system (CNS), including in the OB. It also summarizes the effects of zinc on various amino acid receptors and ion channels involved in regulating synaptic transmission and neuronal excitability, with a special emphasis on the actions of zinc as a neuromodulator in the OB. An understanding of how neuroactive substances such as zinc modulate receptors and ion channels expressed by OB neurons will increase our understanding of the roles that synaptic circuits in the OB play in odor information processing and transmission.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| |
Collapse
|
2
|
Ogino K, Hirata H. Defects of the Glycinergic Synapse in Zebrafish. Front Mol Neurosci 2016; 9:50. [PMID: 27445686 PMCID: PMC4925712 DOI: 10.3389/fnmol.2016.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022] Open
Abstract
Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.
Collapse
Affiliation(s)
- Kazutoyo Ogino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| |
Collapse
|
3
|
Rice C, Ghorai JK, Zalewski K, Weber DN. Developmental lead exposure causes startle response deficits in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:600-8. [PMID: 21955963 PMCID: PMC3207002 DOI: 10.1016/j.aquatox.2011.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/02/2023]
Abstract
Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of lead (as PbCl(2)): 0, 10, or 30 nM until 24 hpf. (1) Response to a mechanosensory stimulus: Individual larvae (168 hpf) were tested for response to a directional, mechanical stimulus. The tap frequency was adjusted to either 1 or 4 taps/s. Startle response was recorded at 1000 fps. Larvae responded in a concentration-dependent pattern for latency to reaction, maximum turn velocity, time to reach V(max) and escape time. With increasing exposure concentrations, a larger number of larvae failed to respond to even the initial tap and, for those that did respond, ceased responding earlier than control larvae. These differences were more pronounced at a frequency of 4 taps/s. (2) Response to a visual stimulus: Fish, exposed as embryos (2-24 hpf) to Pb(2+) (0-10 μM) were tested as adults under low light conditions (≈ 60 μW/m(2)) for visual responses to a rotating black bar. Visual responses were significantly degraded at Pb(2+) concentrations of 30 nM. These data suggest that zebrafish are viable models for short- and long-term sensorimotor deficits induced by acute, low-level developmental Pb(2+) exposures.
Collapse
Affiliation(s)
- Clinton Rice
- Department of Biology, American University, Washington, DC
| | - Jugal K. Ghorai
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Kathryn Zalewski
- Department of Human Movement Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Daniel N. Weber
- Children’s Environmental Health Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- To Whom Correspondence should be Addressed: Children’s Environmental Health Sciences Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204,
| |
Collapse
|
4
|
Lozovaya N, Mukhtarov M, Tsintsadze T, Ledent C, Burnashev N, Bregestovski P. Frequency-Dependent Cannabinoid Receptor-Independent Modulation of Glycine Receptors by Endocannabinoid 2-AG. Front Mol Neurosci 2011; 4:13. [PMID: 21847369 PMCID: PMC3147161 DOI: 10.3389/fnmol.2011.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/13/2011] [Indexed: 02/02/2023] Open
Abstract
Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB) receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG), on the functional properties of glycine receptor channels (GlyRs) and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1–1 μM), 2-AG directly affected the functions of recombinant homomeric α1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ∼300 ms. Addition of 1 μM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4–10 Hz) application of short (2 ms duration) pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10–20 Hz) stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.
Collapse
Affiliation(s)
- Natalia Lozovaya
- INSERM U901, Institut de Neurobiologie de la Méditerranée Marseille, France
| | | | | | | | | | | |
Collapse
|
5
|
Trombley PQ, Blakemore LJ, Hill BJ. Zinc modulation of glycine receptors. Neuroscience 2011; 186:32-8. [PMID: 21530619 PMCID: PMC3118471 DOI: 10.1016/j.neuroscience.2011.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/25/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Glycine receptors are widely expressed in the mammalian central nervous system, and previous studies have demonstrated that glycine receptors are modulated by endogenous zinc. Zinc is concentrated in synaptic vesicles in several brain regions but is particularly abundant in the hippocampus and olfactory bulb. In the present study, we used patch-clamp electrophysiology of rat hippocampal and olfactory bulb neurons in primary culture to examine the effects of zinc on glycine receptors. Although glycine has been reported to reach millimolar concentrations during synaptic transmission, most previous studies on the effects of zinc on glycine receptors have used relatively low concentrations of glycine. High concentrations of glycine cause receptor desensitization. Our current results extend our previous demonstration that the modulatory actions of zinc are largely prevented when co-applied with desensitizing concentrations of glycine (300 μM), suggesting that the effects of zinc are dependent on the state of the receptor. In contrast, pre-application of 300 μM zinc, prior to glycine (300 μM) application, causes a slowly developing inhibition with a slow rate of recovery, suggesting that the timing of zinc and glycine release also influences the effects of zinc. Furthermore, previous evidence suggests that synaptically released zinc can gain intracellular access, and we provide the first demonstration that low concentrations of intracellular zinc can potentiate glycine receptors. These results support the notion that zinc has complex effects on glycine receptors and multiple factors may interact to influence the efficacy of glycinergic transmission.
Collapse
Affiliation(s)
- P Q Trombley
- Department of Biological Science and Program, Florida State University, Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
6
|
Ganser LR, Dallman JE. Glycinergic synapse development, plasticity, and homeostasis in zebrafish. Front Mol Neurosci 2009; 2:30. [PMID: 20126315 PMCID: PMC2815536 DOI: 10.3389/neuro.02.030.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/26/2009] [Indexed: 11/13/2022] Open
Abstract
The zebrafish glial glycine transporter 1 (GlyT1) mutant provides an animal model in which homeostatic plasticity at glycinergic synapses restores rhythmic motor behaviors. GlyT1 mutants, initially paralyzed by the build-up of the inhibitory neurotransmitter glycine, stage a gradual recovery that is associated with reductions in the strength of evoked glycinergic responses. Gradual motor recovery suggests sequential compensatory mechanisms that culminate in the down-regulation of the neuronal glycine receptor. However, how motor recovery is initiated and how other forms of plasticity contribute to behavioral recovery are still outstanding questions that we discuss in the context of (1) glycinergic synapses as they function in spinal circuits that produce rhythmic motor behaviors, (2) the proteins involved in regulating glycinergic synaptic strength, (3) current models of glycinergic synaptogenesis, and (4) plasticity mechanisms that modulate the strength of glycinergic synapses. Concluding remarks (5) explore the potential for distinct plasticity mechanisms to act in concert at different spatial and temporal scales to achieve a dynamic stability that results in balanced motor behaviors.
Collapse
Affiliation(s)
- Lisa R Ganser
- Department of Biology, University of Miami Coral Gables, FL, USA
| | | |
Collapse
|
7
|
Mørkve SH, Hartveit E. Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina. J Physiol 2009; 587:3813-30. [PMID: 19528247 DOI: 10.1113/jphysiol.2009.173583] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The excitability of presynaptic terminals can be controlled by synaptic input that directly targets the terminals. Retinal rod bipolar axon terminals receive presynaptic input from different types of amacrine cells, some of which are glycinergic. Here, we have performed patch-clamp recordings from rod bipolar axon terminals in rat retinal slices. We used whole-cell recordings to study glycinergic inhibitory postsynaptic currents (IPSCs) under conditions of adequate local voltage clamp and outside-out patch recordings to study biophysical and pharmacological properties of the glycine receptors with ultrafast application. Glycinergic IPSCs, recorded in both intact cells and isolated terminals, were strychnine sensitive and displayed fast kinetics with a double-exponential decay. Ultrafast application of brief (approximately 1 ms) pulses of glycine (3 mM) to patches evoked responses with fast, double-exponential deactivation kinetics, no evidence of desensitization in double-pulse experiments, relatively low apparent affinity (EC(50) approximately 100 microM), and high maximum open probability (0.9). Longer pulses evoked slow, double-exponential desensitization and double-pulse experiments indicated slow, double-exponential recovery from desensitization. Non-stationary noise analysis of IPSCs and patch responses yielded single-channel conductances of approximately 41 pS and approximately 64 pS, respectively. Directly observed single-channel gating occurred at approximately 40-50 pS and approximately 80-90 pS in both types of responses, suggesting a mixture of heteromeric and homomeric receptors. Synaptic release of glycine leads to transient receptor activation, with about eight receptors available to bind transmitter after release of a single vesicle. With a low intracellular chloride concentration, this leads to either hyperpolarizing or shunting inhibition that will counteract passive and regenerative depolarization and depolarization-evoked transmitter release.
Collapse
Affiliation(s)
- Svein Harald Mørkve
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
8
|
The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J Neurosci 2008; 28:9755-68. [PMID: 18815261 DOI: 10.1523/jneurosci.0509-08.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At inhibitory synapses, glycine and GABA are accumulated into synaptic vesicles by the same vesicular transporter VGAT/VIAAT (vesicular GABA transporter/vesicular inhibitory amino acid transporter), enabling a continuum of glycine, GABA, and mixed phenotypes. Many fundamental aspects of the presynaptic contribution to the inhibitory phenotypes remain unclear. The neuronal transporter GlyT2 is one of the critical presynaptic factors, because glycinergic transmission is impaired in knock-out GlyT2(-/-) mice and mutations in the human GlyT2 gene slc6a5 are sufficient to cause hyperekplexia. Here, we establish that GlyT2-mediated uptake is directly coupled to the accumulation of glycine into recycling synaptic vesicles using cultured spinal cord neurons derived from GlyT2-enhanced green fluorescent protein transgenic mice. Membrane expression of GlyT2 was confirmed by recording glycine-evoked transporter current. We show that GlyT2 inhibition induces a switch from a predominantly glycine to a predominantly GABA phenotype. This effect was mediated by a reduction of glycinergic quantal size after cytosolic depletion of glycine and was entirely reversed by glycine resupply, illustrating that the filling of empty synaptic vesicles is tightly coupled to GlyT2-mediated uptake. Interestingly, high-frequency trains of stimuli elicit two phases of vesicle release with distinct kinetic requirements for glycine refilling. Thus, our results demonstrate the central role played by GlyT2 in determining inhibitory phenotype and therefore in the physiology and pathology of inhibitory circuits.
Collapse
|
9
|
Muller E, Le-Corronc H, Legendre P. Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor? Front Mol Neurosci 2008; 1:3. [PMID: 18946536 PMCID: PMC2526000 DOI: 10.3389/neuro.02.003.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 01/07/2023] Open
Abstract
Glycine and GABA mediate inhibitory neurotransmission in the spinal cord and central nervous system. The general concept of neurotransmission is now challenged by the contribution of both phasic activation of postsynaptic glycine and GABA(A) receptors (GlyRs and GABA(A)Rs, respectively) and tonic activity of these receptors located at extrasynaptic sites. GlyR and GABA(A)R kinetics depend on several parameters, including subunit composition, subsynaptic localization and activation mode. Postsynaptic and extrasynaptic receptors display different subunit compositions and are activated by fast presynaptic and slow paracrine release of neurotransmitters, respectively. GlyR and GABA(A)R functional properties also rely on their aggregation level, which is higher at postsynaptic densities than at extrasynaptic loci. Finally, these receptors can co-aggregate at mixed inhibitory postsynaptic densities where they cross-modulate their activity, providing another parameter of functional complexity. GlyR and GABA(A)R density at postsynaptic sites results from the balance between their internalization and insertion in the plasma membrane, but also on their lateral diffusion from and to the postsynaptic loci. The dynamic exchange of receptors between synaptic and extrasynaptic sites and their functional adaptation in terms of kinetics point out a new adaptive process of inhibitory neurotransmission.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102 - Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie Paris, France
| | | | | |
Collapse
|